
 Page i

165 Gibraltar Ct,
Sunnyvale, CA 94089

DFE Low Level Driver

Software Design Specification (SDS)

Revision A

<9/18/2013>

NOTICE OF CONFIDENTIAL AND PROPRIETARY INFORMATION

Information contained herein is subject to the terms of the Non-Disclosure Agreement between
Texas Instruments Incorporated and your company, and is of a highly sensitive nature. It is
confidential and proprietary to Texas Instruments Incorporated. It shall not be distributed,
reproduced, or disclosed orally or in written form, in whole or in part, to any party other than the
direct recipients without the express written consent of Texas Instruments Incorporated.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page ii

Revision Record

Document Title: DFE LLD Software Design Specification

Revision

Description of Change

A Initial Release

Note: Be sure the Revision of this document matches the Approval record Revision letter. The

revision letter increments only upon approval via the Quality Record System.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page iii

TABLE OF CONTENTS

1 SCOPE .. 1

2 REFERENCES ... 1

3 DEFINITIONS ... 1

4 OVERVIEW ... 2

5 DESIGN .. 3

5.1 OBJECTS AND LIMITATIONS ... 3
5.2 SOFTWARE RESOURCE REQUIREMENTS ... 4
5.3 INTERFACE DATA STRUCTURES ... 4
5.4 DFE PERIPHERAL CONFIGURATION ... 7

6 DFE LLD APIS .. 7

6.1 OPEN .. 7
6.2 CLOSE .. 8
6.3 LOAD TARGET CONFIGURATION .. 9
6.4 SOFT RESET ... 9
6.5 INITIALIZATION SEQUENCE FOR TRANSMIT PATH .. 10
6.6 INITIALIZATION SEQUENCE FOR RECEIVE PATH ... 11
6.7 GET DEVICE INFORMATION .. 12
6.8 ISSUE SYNC .. 13
6.9 GET SYNC STATUS ... 14
6.10 PROGRAM SYNC COUNTER .. 15
6.11 ISSUE SYNC START SYNC COUNTER .. 16
6.12 PROGRAM BBTX GAIN ... 16
6.13 ISSUE SYNC UPDATE BBTX GAIN ... 17
6.14 GET BBTX GAIN UPDATE COMPLETE... 18
6.15 PROGRAM BBTX POWER METER .. 19
6.16 ISSUE SYNC UPDATE BBTX POWER METER ... 20
6.17 CLEAR BBTX POWER METER DONE STATUS .. 21
6.18 GET BBTX POWER METER DONE STATUS .. 21
6.19 READ BBTX POWER METER ... 22
6.20 OPEN BBTX POWER METER DMA ... 23
6.21 CLOSE BBTX POWER METER DMA ... 24
6.22 ENABLE BBTX POWER METER DMA ... 25
6.23 DISABLE BBTX POWER METER DMA .. 25
6.24 PROGRAM BBRX GAIN ... 26
6.25 ISSUE SYNC UPDATE BBRX GAIN .. 27
6.26 GET BBRX GAIN UPDATE COMPLETE .. 28
6.27 PROGRAM BBRX POWER METER .. 28
6.28 ISSUE SYNC UPDATE BBRX POWER METER ... 30
6.29 CLEAR BBRX POWER METER DONE STATUS ... 30
6.30 GET BBRX POWER METER DONE STATUS.. 31
6.31 READ BBRX POWER METER... 32
6.32 OPEN BBRX POWER METER DMA ... 32
6.33 CLOSE BBRX POWER METER DMA ... 34
6.34 ENABLE BBRX POWER METER DMA ... 34
6.35 DISABLE BBRX POWER METER DMA .. 35
6.36 ENABLE DISABLE BB AID LOOPBACK .. 36
6.37 PROGRAM BB BUF LOOPBACK ... 37
6.38 SET BB AID UL STROBE DELAY .. 38

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page iv

6.39 PROGRAM BB SIGGEN RAMP .. 38
6.40 ISSUE SYNC UPDATE BB SIGGEN .. 39
6.41 PROGRAM BB TESTBUS .. 40
6.42 PROGRAM DDUC MIXER NCO FREQUENCY... 41
6.43 ISSUE SYNC UPDATE DDUC MIXER NCO FREQUENCY .. 41
6.44 PROGRAM DDUC MIXER PHASE ... 42
6.45 ISSUE SYNC UPDATE DDUC MIXER PHASE .. 43
6.46 PROGRAM DDUC FARROW PHASE .. 44
6.47 ISSUE SYNC UPDATE DDUC FARROW PHASE ... 44
6.48 PROGRAM DISTRIBUTOR MAP ... 45
6.49 ISSUE SYNC UPDATE DISTRIBUTOR MAP... 46
6.50 PROGRAM SUMMER SHIFT ... 47
6.51 PROGRAM SUMMER MAP .. 47
6.52 ISSUE SYNC UPDATE SUMMER MAP .. 48
6.53 PROGRAM CFR COEFFICIENTS .. 49
6.54 ISSUE SYNC UPDATE CFR COEFFICIENTS.. 50
6.55 PROGRAM CFR PREGAIN .. 50
6.56 ISSUE SYNC UPDATE CFR PREGAIN .. 51
6.57 PROGRAM CFR POSTGAIN .. 52
6.58 ISSUE SYNC UPDATE CFR POSTGAIN .. 53
6.59 PROGRAM CFR PROTECTION GAIN ... 53
6.60 PROGRAM TX MIXER .. 54
6.61 ISSUE SYNC UPDATE TX MIXER ... 55
6.62 PROGRAM TX PA PROTECTION ... 56
6.63 GET TX PA PROTECTION INTERRUPT STATUS .. 57
6.64 CLEAR TX PA PROTECTION INTERRUPT STATUS .. 58
6.65 READ TX PA PROTECTION POWER STATUS .. 59
6.66 PROGRAM JESD TX TO LANE MAP ... 60
6.67 PROGRAM JESD TX SIGGEN RAMP ... 61
6.68 ISSUE SYNC UPDATE JESDTX SIGGEN ... 62
6.69 PROGRAM JESD TX TESTBUS ... 63
6.70 GET JESD TX LINK STATUS .. 63
6.71 GET JESD TX LANE STATUS ... 64
6.72 CLEAR JESD TX LINK ERRORS ... 65
6.73 CLEAR JESD TX LANE ERRORS .. 66
6.74 PROGRAM JESD LANE TO RX MAP ... 67
6.75 PROGRAM JESD LOOPBACK.. 68
6.76 PROGRAM JESD RX TESTBUS ... 69
6.77 GET JESD RX LINK STATUS ... 69
6.78 GET JESD RX LANE STATUS ... 70
6.79 CLEAR JESD RX LINK ERROR ... 72
6.80 CLEAR JESD RX LANE ERROR .. 72
6.81 PROGRAM RX IBPM GLOBAL ... 73
6.82 PROGRAM RX IBPM ... 74
6.83 ISSUE SYNC UPDATE RX IBPM .. 75
6.84 ISSUE RX IBPM READ REQUEST .. 76
6.85 GET RX IBPM READ ACK .. 77
6.86 READ RX IBPM RESULT ... 78
6.87 PROGRAM RX EQUALIZER .. 78
6.88 ISSUE SYNC UPDATE RX EQUALIZER .. 80
6.89 PROGRAM RX MIXER NCO ... 80
6.90 ISSUE SYNC UPDATE RX MIXER NCO FREQUENCY .. 81
6.91 PROGRAM RX TESTBUS ... 82
6.92 PROGRAM FB EQUALIZER ... 82
6.93 ISSUE SYNC UPDATE FB EQUALIZER .. 83

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page v

6.94 PROGRAM FB MIXER NCO ... 84
6.95 ISSUE SYNC UPDATE FB MIXER NCO ... 85
6.96 PROGRAM FB IO MUX .. 86
6.97 PROGRAM FB PRE-CB GAIN .. 86
6.98 ISSUE SYNC UPDATE FB PRE-CB GAIN .. 87
6.99 PROGRAM CB NODE CONFIG .. 88
6.100 PROGRAM CB BUF CONFIG ... 89
6.101 ARM CB AND ISSUE SYNC ... 90
6.102 GET CB DONE STATUS .. 90
6.103 READ CB BUF ... 91
6.104 OPEN CB BUF DMA ... 92
6.105 CLOSE CB BUF DMA .. 93
6.106 ENABLE CB BUF DMA ... 94
6.107 DISABLE CB BUF DMA .. 94
6.108 DISABLE ALL TESTBUS ... 95
6.109 PROGRAM DFE GPIO PINMUX ... 95
6.110 SET DFE GPIO SYNC OUT SOURCE .. 97
6.111 SET DFE GPIO BANK OUTPUT ... 97
6.112 GET DFE GPIO BANK INPUT .. 98
6.113 OPEN GENERIC IO DMA ... 99
6.114 CLOSE GENERIC IO DMA ... 100
6.115 PREPARE GENERIC DMA EMBEDDED HEADER ... 100
6.116 ENABLE LUT TOGGLE .. 102
6.117 SETSYNCSEL FOR LUT .. 102
6.118 ISSUE SYNC UPDATE LUT .. 103
6.119 GET CURRENT LUT MEMORY INDEX .. 104
6.120 PROGRAM LUT TABLE ... 104
6.121 GET DPD CONFIGURATION... 105
6.122 LOAD DPDA IMAGE .. 106
6.123 READ DPDA IG REGISTER .. 107
6.124 READ DPDA PARAMETERS ... 108
6.125 READ DPDA SCALAR REGISTER .. 108
6.126 START DPDA .. 109
6.127 WRITE DPDA IG REGISTER ... 110
6.128 WRITE DPDA SAMPLES .. 110
6.129 WRITE DPDA SCALAR REGISTER .. 111

7 INTEGRATION ... 112

7.1 OSAL .. 112
7.1.1 Logging API ... 112

7.2 INTEGRATION ON ARM LINUX... 112
7.3 INTEGRATION ON DSP SYSBIOS ... 113

8 FUTURE EXTENSIONS... 113

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 1

1 Scope

This document describes the functionality, architecture, and operation of the Digital Radio Front-

End (DFE) Low Level Driver (LLD).

2 References

The following references are related to the feature described in this document and shall be

consulted as necessary.

No Referenced Document Control Number Description

1 IQN2 User Guide Version x.x.x IQN2 User Guide

2 CPPI User Guide Version x.x.x CPPI User Guide

3 DEF CSL API Document Version x.x.x DOXYGEN generated API

documentation located in

the package under the

“docs” directory in CHM

format.

Table 1. Referenced Materials

3 Definitions

Acronym Description

DFE Digital radio Front-End

API Application Programming Interface

IQN2 IQNet2

CPPI Communication Port Programming Interface

LLD Low Level Driver

CTL IQN2 ConTroL channel, for shipping non-iq data packets

CPP/DMA CTL Packet Process, a DMA engine in DFE

CTL Control data, non i/q stream

CB Capture Buffer in DFE

BB Baseband

DDUC Digital Down/Up Convertor

SUM Summer, map DDUC Tx Channels to a Tx stream

CFR Crest Factor Reduction

DPD Digital Pre-Distortion

JESD

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 2

Acronym Description

FB Feedback path in DFE

DIST Distributor, map DDUC Rx channels to a Rx stream

TX Transmit, an IP block between DPD and JESDTX

RX Receive, an IP block between DDUC and JESDRX

NCO Numeric Controlled Oscillator

Table 2. Definitions

4 Overview

DFE is a high performance wideband digital IF transmit and receive signal processing peripheral

for small cell base station applications. It implements advanced algorithms for RF power

amplifier linearization including crest factor reduction (CFR) and digital pre-distortion (DPD),

and for correcting other receiver RF impairments like IQ imbalance, DC offset and distortion.

BB

TX

BB

RX

DDUC

TX

DDUC

RX

CFR DPD TX
JESD

TX

JESD

RX

RX

FB

CPP/DMA CB MISCCTL IO

IQ Egress

IQ Igress

Bytes Egress

Bytes Igress

GPIOs

Register IO

S

U

M

D

I

S

T

Figure 1, DFE Diagram

In signal processing Tx path,

 BB TX has gain adjustment and power meter per carrier;

 DDUC TX setups carrier mixer frequency and phase, PFIR coefficients, Farrow channel

phase;

 SUM maps DDUC Tx channel to Tx stream and then adjusts stream gain by shift control;

 CFR has preCFR gain, postCFR gain adjustments, CFR filter coefficients update;

 DPD LUTs are updated after software complete iteration;

 TX has a PA protection block which signals CFR to reduce gain when abnormal peak

and/or power detected;

 JESDTX reports link/lane status for transmit connection.

In signal processing Rx path,

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 3

 JESDTX reports link/lane status for receiving connection, and controls JESD lane

loopback;

 RX has programmable equalizer, NCO mixer;

 FB has programmable equalizer, NCO mixer, IO Mux, and gain adjustment before CB;

 DIST maps RX stream to DDUC Rx channel;

 BB RX has gain adjustment and power meter per carrier;

SoC reads/writes DFE via memory mapped registers. DFE has a built-in DMA engine,

CPP/DMA, which allows big chunks of data move in/out very efficiently via PktDMA. Software

should use CPP/DMA as much as possible.

CB can capture up to 32K complex samples at hardware nodes and test-bus positions in signal

path. DPD adaptation uses CB to get reference and feedback buffers. CB is also a great tool to

peek what is going on in signal path.

MISC block controls feedback switch GPIOs and top level interrupts aggregation.

5 Design

5.1 Objects and Limitations

DFE LLD just supports open single device instance for each DFE peripheral. The application

software should take care of necessary serialization or arbitration in multi-cores multi-threads

operation system. In Linux, the LLD is running in user mode.

DFE LLD just configures, controls, writes, reads DFE block. Any other block accessing is out of

scope. IQN2 is the bridge between DFE and other parts of SoC; PktDMA is the preferred way to

move data bulks into/out of DFE.

 For using IQN2, please refer to IQN2 User Guide

 For using PktDMA, please refer to CPPI User Guide

DFE LLD API should run to completion without any waiting loop longer than 1ms, especially no

polling internally for any event, such as a sync event, a done interrupt event. One solution is to

break the operation to several APIs, and let the calling thread do the waiting part. The example is

capture buffer operation, whose pseudo calling sequence in high layer is like,

GetCB()

{

 /* setup CB Nodes and Buffers */

 Setup();

 /* arm CB block with selected sync */

 ArmCb();

 /* wait for CB done */

 While(get_done_status() == FALSE) { /* spin wait */ }

 /* read data back */

 Read_data();

}

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 4

Another solution is using callback function when there need a waiting function. The example is

DFE initialization sequence, which has many steps need wait for sync counter sync events.

To be flexible, DFE LLD doesn’t maintain antenna mapping, which should be taken care by high

level software. On the other hand, it supports conversion between friendly arguments and

hardware recognized values. For example, signal power reading API returns peak and rms power

in floating number dB, rather than raw register values.

DFE LLD doesn’t have built-in interrupt service routines. To check if an interrupt event has

come, high level software has to use polling method.

5.2 Software Resource Requirements

In each direction, IQN2 has total 48 channels connect to DFE. Any channel can map to either

BB(IQ) or CPP/DMA(CTL). In practice, first 32 ones are recommended mapping to BB, next 16

ones mapping to CPP/DMA. Enable all 16 CTL channels are highly recommended when

configure IQN2.

Lamarr IQN2 Egress Queue Recommend Map

832 ~ 863 Transferring IQ packets to DFE BBTX

864 ~ 879 Transferring CTL packets to DFE CPP/DMA

DFE LLD does not maintain any global object and context.

5.3 Interface Data Structures

All LLD APIs are running within the device instance context DFE_Obj, which is user allocated

but initialized in DFE_open().
typedef struct _DFE_Obj

{

 // DFE CSL object

 DfeFl_Obj objDfe;

 // DFE_BB CSL object

 DfeFl_BbObj objDfeBb[DFE_FL_BB_PER_CNT];

 // DFE_DDUC CSL object

 DfeFl_DducObj objDfeDduc[DFE_FL_DDUC_PER_CNT];

 // DFE_SUMMER CSL object

 DfeFl_SummerObj objDfeSummer[DFE_FL_SUMMER_PER_CNT];

 // DFE_AUTOCP CSL object

 DfeFl_AutocpObj objDfeAutocp[DFE_FL_AUTOCP_PER_CNT];

 // DFE_CFR CSL object

 DfeFl_CfrObj objDfeCfr[DFE_FL_CFR_PER_CNT];

 // DFE_CDFR CSL object

 DfeFl_CdfrObj objDfeCdfr[DFE_FL_CDFR_PER_CNT];

 // DFE_DPD CSL object

 DfeFl_DpdObj objDfeDpd[DFE_FL_DPD_PER_CNT];

 // DFE_DPDA CSL object

 DfeFl_DpdaObj objDfeDpda[DFE_FL_DPDA_PER_CNT];

 // DFE_TX CSL object

 DfeFl_TxObj objDfeTx[DFE_FL_TX_PER_CNT];

 // DFE_RX CSL object

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 5

 DfeFl_RxObj objDfeRx[DFE_FL_RX_PER_CNT];

 // DFE_CB CSL object

 DfeFl_CbObj objDfeCb[DFE_FL_CB_PER_CNT];

 // DFE_JESD CSL object

 DfeFl_JesdObj objDfeJesd[DFE_FL_JESD_PER_CNT];

 // DFE_FB CSL object

 DfeFl_FbObj objDfeFb[DFE_FL_FB_PER_CNT];

 // DFE_MISC CSL object

 DfeFl_MiscObj objDfeMisc[DFE_FL_MISC_PER_CNT];

 // DFE CSL context

 DfeFl_Context dfeCtx;

 // DFE CSL param

 DfeFl_Param dfeParam;

 // DFE CSL Handle

 DfeFl_Handle hDfe;

 // DFE_BB CSL Handle

 DfeFl_BbHandle hDfeBb[DFE_FL_BB_PER_CNT];

 // DFE_DDUC CSL Handle

 DfeFl_DducHandle hDfeDduc[DFE_FL_DDUC_PER_CNT];

 // DFE_SUMMER CSL Handle

 DfeFl_SummerHandle hDfeSummer[DFE_FL_SUMMER_PER_CNT];

 // DFE_AUTOCP CSL Handle

 DfeFl_AutocpHandle hDfeAutocp[DFE_FL_AUTOCP_PER_CNT];

 // DFE_CFR CSL Handle

 DfeFl_CfrHandle hDfeCfr[DFE_FL_CFR_PER_CNT];

 // DFE_CDFR CSL Handle

 DfeFl_CdfrHandle hDfeCdfr[DFE_FL_CDFR_PER_CNT];

 // DFE_DPD CSL Handle

 DfeFl_DpdHandle hDfeDpd[DFE_FL_DPD_PER_CNT];

 // DFE_DPDA CSL Handle

 DfeFl_DpdaHandle hDfeDpda[DFE_FL_DPDA_PER_CNT];

 // DFE_TX CSL Handle

 DfeFl_TxHandle hDfeTx[DFE_FL_TX_PER_CNT];

 // DFE_RX CSL Handle

 DfeFl_RxHandle hDfeRx[DFE_FL_RX_PER_CNT];

 // DFE_CB CSL Handle

 DfeFl_CbHandle hDfeCb[DFE_FL_CB_PER_CNT];

 // DFE_JESD CSL Handle

 DfeFl_JesdHandle hDfeJesd[DFE_FL_JESD_PER_CNT];

 // DFE_FB CSL Handle

 DfeFl_FbHandle hDfeFb[DFE_FL_FB_PER_CNT];

 // DFE_MISC CSL Handle

 DfeFl_MiscHandle hDfeMisc[DFE_FL_MISC_PER_CNT];

 // DFE_CPP CSL resource manager

 DfeFl_CppResMgr cppResMgr;

 // BBTX power meter for CPP/DMA

 uint32_t bbtxPowmtr;

 // dma handle for BBTX power meter

 DfeFl_CppDmaHandle hDmaBbtxPowmtr;

 // descriptor handle for BBTX power meter

 DfeFl_CppDescriptorHandle hDescripBbtxPowmtr;

 // IQN2 CTL Ingress Channel for BBTX power meter

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 6

 uint32_t bbtxPowmtrIqnChnl;

 // BBRX power meter for CPP/DMA

 uint32_t bbrxPowmtr;

 // dma handle for BBRX power meter

 DfeFl_CppDmaHandle hDmaBbrxPowmtr;

 // descriptor handle for BBRX power meter

 DfeFl_CppDescriptorHandle hDescripBbrxPowmtr;

 // descriptor handle for BBTX power meter

 uint32_t bbrxPowmtrIqnChnl;

 // flag to read all 18 bit Cb

 uint32_t flag_18bit;

 // dma handle for cb

 DfeFl_CppDmaHandle hDmaCb;

 // descriptor handle for cb

 DfeFl_CppDescriptorHandle hDescripCb[8];

 // IQN2 CTL Channel

 uint32_t cbIqnChnl;

 // sync counter ssel

 DfeFl_MiscSyncGenSig sync_cnter_ssel;

 // bbtx siggen ssel

 uint32_t bbtx_siggen_ssel;

 // bbrx checksum ssel

 uint32_t bbrx_chksum_ssel;

 // ulStrobe strobe

 DfeFl_MiscSyncGenSig ulStrobe_Sync;

 // RX IBPM Unity Magnitude Sqaure value (=I^2 + Q^2)

 uint64_t rxIbpmUnityMagsq;

 // generic DMA hndle

 DfeFl_CppDmaHandle hDmaGeneric;

 // IQN2 CTL Egress channel for generic writing DMA

 uint32_t genericDmaIqnChnlDl;

 // IQN2 CTL Ingress channel for generic reading DMA

uint32_t genericDmaIqnChnlUl;

} DFE_Obj;

typedef DFE_Obj * DFE_Handle;

User also defines CPP/DMA reserved channels and reserved descriptors in the resource

management table, which will be saved to the device context in Dfe_open(). Reserved

channel/descriptor can only be opened using explicit Id of the resource; non-reserved resource

can be opened using DFE_FL_CPP_OPEN_ANY.
/** CPP resource manager */

typedef struct _DFE_CppResTbl

{

 // reserved dma bitmask

 Uint32 dmaRsvd;

 // discrete trigger out

 Uint32 discreteTrig[DFE_FL_CPP_NUM_DISCRETE_TRIGGERS];

 // four 32-bits words, each bit corresponding to one descriptor

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 7

 // reserved descriptor bitmask

 Uint32 descripRsvd[4];

} DFE_CppResTbl;

5.4 DFE Peripheral Configuration

To properly configure DFE, the following sequence must be followed,

Step Description DFE LLD API

1 Program DFE PLL to correct operation rate

2 Power up IQN2 and DFE power domains

3 Program SERDES to corresponding rate

4 Program analogue front-end which connects with DFE

5 Open DFE LLD Dfe_open()

5 Load DFE target configuration Dfe_loadTgtCfg()

 Soft Reset DFE peripheral Dfe_softReset()

 Check and wait SERDES PLL_OK

6 Do DFE initialization sequence for transmit path Dfe_initTgtTx()

 Check and wait SERDES OK and !LOSS

 Do DFE initialization sequence for receive path Dfe_initTgtRx()

7 QMSS, CPPI configuration

8 IQN2 configuration and enable

6 DFE LLD APIs

6.1 Open

Open DFE LLD device.

Prototype
DFE_Handle Dfe_open

(

 int dfeInst,

DFE_Obj *dfeObj,

 DFE_CppResTbl *dfeResTbl,

 DFE_Err *err

);

Description
Open DFE low level driver device instance. Before call the API, the

caller should allocate the memory buffer for DFE_Obj, which will be the

context for the life of DFE LLD. The buffer shall not be allocated from

stack.

Upon Dfe_open() succeeds, the error code is set to DFE_ERR_NONE.

 DFE LLD object dfeObj has been initialized.

 User defined resource management table has been saved to instance

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 8

context.

 A valid DFE_Handle value is returned.

When the error code is DFE_ERR_INVALID_DEVICE, the LLD doesn’t find the

specified dfeInst device.

The API should only be called once.

Arguments
dfeInst [in] DFE device instance number

dfeObj [out] DFE LLD device context

dfeResTbl [in] DFE resource management table

err [out] exit error code

Return Value
A valid DFE_Handle value is returned when the call succeeds; otherwise

a NULL is returned.

Constrains
1) dfeObj buffer shall not be allocated in stack.
2) Dfe_open() should be called only once.

6.2 Close

Close DFE LLD device opened by Dfe_open().

Prototype
DFE_Err Dfe_close

(

 DFE_Handle hDfe

);

Description
Close DFE low level driver device instance, which was opened by

Dfe_open().

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if close properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

Constrains
1) hDfe should be a valid handle opened by Dfe_open().

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 9

6.3 Load Target Configuration

Load DFE target configuration, i.e. registers contents.

Prototype
DFE_Err Dfe_loadTgtCfg

(

 DFE_Handle hDfe,

 DFE_RegPair tgtCfgPairs[]

);

Description
Write target configuration i.e. registers contents, to DFE hardware.

The target config format is defined as,

// (addr, data) register pair

typedef struct

{

 // offset address from DFE base address

 Uint32 addr;

 // data to/from addr

 Uint32 data;

} DFE_RegPair;

The last entity of tgtCfgPairs must be (0xffffffffu, 0xffffffffu),

which is the end marker.

Arguments
hDfe [in] DFE device handle

tgtCfgPairs [in] pointer to (addr, adta) pairs buffer

Return Value
DFE_ERR_NONE, if write to DFE properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) The last entity of tgtCfgPairs must be (0xffffffffu, 0xffffffffu)
3) DFE PLL and PSCs shall be already up running.

6.4 Soft Reset

Do soft reset for DFE peripheral.

Prototype
DFE_Err Dfe_softReset

(

 DFE_Handle hDfe

);

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 10

Description
The API does a software reset for DFE peripheral. Like power up reset,

soft reset does assert init_clk_gate, init_state, and clear_data to all

sub-blocks in DFE. On the other hand unlike power up reset, soft reset

keeps all registers values unchanged, except for init register in each

block.

Soft reset should be done after Dfe_loadTgtCfg() but before

Dfe_initTgtTx(), and Dfe_initTgtRx().

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if soft reset properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) Dfe_loadTgtCfg() already called.

6.5 Initialization Sequence for Transmit Path

DFE initialization sequence for transmit path.

Prototype
DFE_Err Dfe_initTgtTx

(

 DFE_Handle hDfe,

 DFE_CallbackContext waitSyncCtx,

 DFE_CallbackWaitSync waitSyncFxn

);

Description
The API runs initialization sequence for transmit path.

When JESD Tx lanes configured connecting to SERDES, this initialization

shouldn’t be made until SERDES Tx lock (pll_ok).

In the sequence, there’re many steps need wait a sync signal. This is

done by callback waitSyncFxn().

// callback function for waiting sync signal

// return DFE_ERR_OK if sync signal come properly

// return DFE_ERR_TIMEDOUT if sync signal not come before timed out

typedef DFE_Err (*DFE_CallbackWaitSync)

(

 // callback context

 DFE_CallbackContext cbkCtx,

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 11

 // DFE device handle

 DFE_Handle hDfe,

 // sync signal to be waiting

 DfeFl_MiscSyncGenSig syncSig;

);

When complete with DFE_ERR_NONE, DFE transmit path is ready working,

otherwise DFE peripheral is in unknown condition.

Arguments
hDfe [in] DFE device handle

waitSyncCtx [in] callback context pass to waitSyncFxn

waitSyncFxn [in] callback function for waiting a sync signal

Return Value
DFE_ERR_NONE, if initialization properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_SYNC_NOT_COME, if sync signal not come

DFE_ERR_CALLBACKFXN_IS_NULL, if callback function required but given a

NULL pointer

DFE_ERR_HW_CTRL, if CSL HwControl() failed

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) Dfe_softReset() already called.

6.6 Initialization Sequence for Receive Path

DFE initialization sequence for receive path.

Prototype
DFE_Err Dfe_initTgtRx

(

 DFE_Handle hDfe,

 DFE_CallbackContext waitSyncCtx,

 DFE_CallbackWaitSync waitSyncFxn

);

Description
The API runs initialization sequence for receive path.

When JESD Rx lanes configured connecting to SERDES, this initialization

shouldn’t be made until SERDES Rx OK bit set and LOSS bit cleared.

In the sequence, there’re many steps need wait a sync signal. This is

done by callback waitSyncFxn().

// callback function for waiting sync signal

// return DFE_ERR_OK if sync signal come properly

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 12

// return DFE_ERR_TIMEDOUT if sync signal not come before timed out

typedef DFE_Err (*DFE_CallbackWaitSync)

(

 // callback context

 DFE_CallbackContext cbkCtx,

 // DFE device handle

 DFE_Handle hDfe,

 // sync signal to be waiting

 DfeFl_MiscSyncGenSig syncSig;

);

When complete with DFE_ERR_NONE, DFE receive path is ready working,

otherwise DFE peripheral is in unknown condition.

Arguments
hDfe [in] DFE device handle

waitSyncCtx [in] callback context pass to waitSyncFxn

waitSyncFxn [in] callback function for waiting a sync signal

Return Value
DFE_ERR_NONE, if initialization properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_SYNC_NOT_COME, if sync signal not come

DFE_ERR_CALLBACKFXN_IS_NULL, if callback function required but given a

NULL pointer

DFE_ERR_HW_CTRL, if CSL HwControl() failed

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) Dfe_initTgtTx() already called.

6.7 Get Device Information

Get back DFE device information, such as PID, base address etc.

Prototype
DFE_Err Dfe_getDevInfo

(

 DFE_Handle hDfe,

 DFE_DevInfo *devInfo

);

Description
Get back DFE device information, such as PID, base address etc.

Write target configuration i.e. registers contents, to DFE hardware.

The target config format is defined as,

// DFE Device information

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 13

typedef struct

{

 // DFE peripheral ID

 Uint32 pid;

 // DFE peripheral base address

 void *baseAddr;

 // DFE LLD version

 Uint32 version;

} DFE_DevInfo;

Arguments
hDfe [in] DFE device handle

devInfo [out] pointer to devInfo buffer

Return Value
DFE_ERR_NONE, if get info properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_INVALID_PARAMS, if devInfo is NULL

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.

6.8 Issue Sync

Issue a sync signal.

Prototype
DFE_Err Dfe_issueSync

(

 DFE_Handle hDfe,

 DfeFl_MiscSyncGenSig syncSig,

 Uint32 waitCnt

);

Description
Issue a sync signal.

 If waitCnt is DFE_FL_MISC_SYNC_NOWAIT, the function just does

issue the sync and returns DFE_ERR_NONE immediately.

Dfe_getSyncStatus() can be called later to check if the sync has

come.

 If waitCnt is DFE_FL_MISC_SYNC_WAITFOREVER, the function waits

until the signal has really come. And then returns DFE_ERR_NONE.

 If waitCnt is DFE_FL_MISC_SYNC_WAIT(n), 0 < n < 0xfffffffu, the

function waits until

1) either the signal has come before n loops complete, returns
DFE_ERR_NONE;

2) or n loops complete but the signal not come, returns
DFE_ERR_SYNC_NOT_COME

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 14

For performance and flexible considerations, using

DFE_FL_MISC_SYNC_NOWAIT for waitCnt is recommended.

Arguments
hDfe [in] DFE device handle

syncSig [in] sync signal to be issued

waitCnt [in] wait loop count

Return Value
DFE_ERR_NONE, if issue sync done properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_SYNC_NOT_COME, if sync signal not coming within waitCnt loops.

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.9 Get Sync Status

Get a sync signal status.

Prototype
DFE_Err Dfe_getSyncStatus

(

 DFE_Handle hDfe,

 DfeFl_MiscSyncGenSig syncSig,

 Uint32 *signaled

);

Description
Get status of a sync signal. When return, if *signaled is 1, the sync

has come; if *signaled is 0, the sync hasn’t come.

Arguments
hDfe [in] DFE device handle

syncSig [in] sync signal to be issued

signalled [out] pointer to signal status buffer

Return Value
DFE_ERR_NONE, if issue sync done properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

Constrains
4) hDfe should be a valid handle opened by Dfe_open().
5) DFE PLL and PSCs shall be already up running.
6) DFE has loaded target config and completed initialize sequence.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 15

6.10 Program Sync Counter

Program a sync counter.

Prototype
DFE_Err Dfe_progSyncCounter

(

 DFE_Handle hDfe,

 DfeFl_MiscSyncGenCntr cntr,

 Uint32 delay,

 Uint32 period,

 Uint32 pulseWidth,

 Uint32 repeat,

 Uint32 invert

);

Description
The API first resets the counter and then reprogram to specified

parameters.

NOTE, Dfe_issueSyncStartSyncCounter() should be then called to start

the counter.

Arguments
hDfe [in] DFE device handle

cntr [in] sync counter number

delay [in] number of clocks to wait after sync select

source before sending initial sync. If set to 0,

sync counter output will be high if sync select

source is high

period [in] number of clocks to wait between syncs when

repeat is 1. Does nothing when repeat is 0.

pulseWidth [in] set to X for pulse width of X clocks; 0 means

it will never go high.

repeat [in] If 0, counter counts down delay clocks once,

sends a sync, and stops. If 1, it counts down delay

clocks sends a sync, then continuously sends more

syncs every period clocks.

invert [in] set to 1 to invert entire bus

Return Value
DFE_ERR_NONE, if sync counter programmed properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 16

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncStartSyncCounter() should be called later to issue

sync to start the counter.

6.11 Issue Sync Start Sync Counter

 Issue sync to start the sync counter, and return without waiting.

Prototype
DFE_Err Dfe_ issueSyncStartSyncCounter
(

 DFE_Handle hDfe,

 DfeFl_MiscSyncGenCntr cntr,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to start the sync counter that has been already programmed

by Dfe_progSyncCounter(). It programs the counter’s starting sync

select with ssel (using ALWAYS sync signal) and returns immediately

after issue the sync. So Dfe_getSyncStatus() should be called later to

check if the sync has come.

Arguments
hDfe [in] DFE device handle

cntr [in] sync counter number

ssel [in] sync select to re-start sync counter

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.12 Program BBTX Gain

Program BBTX AxCs with new gains.

Prototype
DFE_Err Dfe_progBbtxGain

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 17

(

 DFE_Handle hDfe,

 Uint32 numAxCs,

 Uint32 axc[],

 float gain[]

);

Description
Write new BBTX AxCs’ gains to shadow memory. The range for a gain is

-84dB ~ +6dB. The API changes gain’s real part only.

NOTE, Dfe_issueSyncUpdateBbtxGain should be called later to let

hardware copy gains from shadow to working memory.

Arguments
hDfe [in] DFE device handle

numAxCs [in] number of AxCs whose gains are to be changed

axc [in] array of AxCs whose gains are to be changed

gain [in] array of new real gains, in dB

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateBbtxGain () should be called later to copy

gains to working memory.

6.13 Issue Sync Update BBTX Gain

Issue sync update BBTX gain to new values.

Prototype
DFE_Err Dfe_issueSyncUpdateBbtxGain

(

 DFE_Handle hDfe,

 Uint32 ct,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to copy BBTX gains from shadow to working memory.

Dfe_getSyncStatus() should be called later to check if the sync has

come.

This API also clears update complete interrupt status bit of the

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 18

corresponding carrier type.

To check if update complete, call Dfe_getBbtxGainUpdateComplete().

NOTE, Both axc_valid bit and gain_en bit (in register

dfe.bb.bbtxif_axc_config0) have to be set ‘1’, in order to see

effectiveness of the gains.

Arguments
hDfe [in] DFE device handle

ct [in] carrier type

ssel [in] sync select to copy gains from shadow to

working memory.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.14 Get BBTX Gain Update Complete

Get BBTX gain update complete status.

Prototype
DFE_Err Dfe_getBbtxGainUpdateComplete

(

 DFE_Handle hDfe,

 Uint32 ct,

 Uint32 *complete

);

Description
Get BBTX gain update complete status. The API first reads

txgain_update_status, if corresponding ct bit is clear, then the update

is still in progress. Otherwise, it further reads back and returns the

update complete interrupt status.

Arguments
hDfe [in] DFE device handle

ct [in] carrier type

complete [out] buffer of update complete status

 0 = still in progress

 1 = update complete

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 19

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL HwGetStatus() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.15 Program BBTX Power Meter

Program BBTX power meter with new configuration.

Prototype
DFE_Err Dfe_progBbtxPowmtr

(

DFE_Handle hDfe,

Uint32 pmId,

 DFE_BbtxPowmtrConfig *mtrCfg

);

Description
Write new BBTX power meter configuration.

// BBTX power meter config

typedef struct

{

 // enable power meter function

 DfeFl_BbPowMtrEnable enable;

 // carrier type

 Uint32 countSource;

 // power meter input source

 DfeFl_BbPowMtrInSource inSource;

 // tdd mode

 DfeFl_BbPowMtrTddMode tddMode;

 // delay from sync

 Uint32 syncDly;

 // meter interval

 Uint32 interval;

 // integration period

 Uint32 intgPd;

 // count of measurements, i.e. count of intervals

 Uint32 powUptIntvl;

} DFE_BbtxPowmtrConfig;

NOTE, Dfe_issueSyncUpdateBbtxPowmtr should be called later to let

hardware take the configuration.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 20

Arguments
hDfe [in] DFE device handle

pmId [in] BBTX power meter Id, 0 ~ 15

mtrCfg [in] new meter configuration

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateBbtxPowmtr() should be called later to let

hardware take new configuration.

6.16 Issue Sync Update BBTX Power Meter

Issue sync update BBTX power meter to new configuration.

Prototype
DFE_Err Dfe_issueSyncUpdateBbtxPowmtr

(

 DFE_Handle hDfe,

 Uint32 pmId,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to let BBTX power meter run with new configuration.

Dfe_getSyncStatus() may be called later to check if the sync has come.

NOTE, Both axc_valid bit and pm_en bit (in register

dfe.bb.bbtxif_axc_config0) have to be set ‘1’, in order to make power

meter run measurement.

Arguments
hDfe [in] DFE device handle

pmId [in] BBTX power meter Id, 0 ~ 15

ssel [in] sync select to update power meter

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 21

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.17 Clear BBTX Power Meter Done Status

Clear BBTX power meter complete interrupt status.

Prototype
DFE_Err Dfe_clearBbtxPowmtrDoneIntrStatus

(

 DFE_Handle hDfe,

 Uint32 pmId

);

Description
Clear complete interrupt status of a BBTX power meter.

Arguments
hDfe [in] DFE device handle

pmId [in] BBTX power meter Id, 0 ~ 15

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.18 Get BBTX Power Meter Done Status

Get BBTX power meter complete interrupt status.

Prototype
DFE_Err Dfe_getBbtxPowmtrDoneIntrStatus

(

 DFE_Handle hDfe,

 Uint32 pmId,

 Uint32 *complete

);

Description

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 22

Get complete interrupt status of a BBTX power meter.

Arguments
hDfe [in] DFE device handle

pmId [in] BBTX power meter Id, 0 ~ 15

complete [out] BBTX power meter complete status,

 0 = measurement not complete yet

 1 = measurement complete

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_INVALID_PARAMS, if invalid parameters

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

Constrains
4) hDfe should be a valid handle opened by Dfe_open().
5) DFE PLL and PSCs shall be already up running.
6) DFE has loaded target config and completed initialize sequence.

6.19 Read BBTX Power Meter

Read BBTX power meter result via CPU.

Prototype
DFE_Err Dfe_readBbtxPowmtr

(

 DFE_Handle hDfe,

 Uint32 pmId,

 float *peak,

 float *rms

);

Description
Read peak and RMS power results of a BBTX power meter via CPU. It reads

DFE registers directly and convert them to friendly values in dB.

The API doesn’t wait for a new measurement; it read back whatever

current result.

NOTE, Both axc_valid bit and pm_en bit (in register

dfe.bb.bbtxif_axc_config0) have to be set ‘1’, in order to make power

meter run measurement.

Arguments
hDfe [in] DFE device handle

pmId [in] BBTX power meter Id, 0 ~ 15

peak [out] peak power of AxC

rms [out] RMS power of AxC

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 23

Return Value
DFE_ERR_NONE, if API complete programmed properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_INVALID_PARAMS, if invalid parameters

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.20 Open BBTX Power Meter DMA

Open CPP/DMA for reading BBTX power meters.

Prototype
DFE_Err Dfe_openBbtxPowmtrDma

(

 DFE_Handle hDfe,

 Uint32 cppDmaId,

 Uint32 cppDescripId,

 Uint32 iqnChnl

);

Description
Allocate CPP/DMA channel and descriptor for BBTX power meter results

uploading.

Every power meter results 4 words, first twos for peak power, last twos

for RMS power. Both peak power and RMS power are formatted in floating

point (26 bit mantissa + 6 bit exponent). The mantissa is a <10.16>

format.

Word# Bit[31..16] Bit[15..0]

0 Not Used Peak power

Bit[15..6], 10-bits integer portion of

mantissa.

Bit[5..0], 6-bits exponent (of 2-based)

1 Not Used Peak power

16-bits fraction portion of mantissa.

2 Not Used RMS power

Bit[15..6], 10-bits integer portion of

mantissa.

Bit[5..0], 6-bits exponent (of 2-based)

3 Not Used RMS power

16-bits fraction portion of mantissa.

There’re total 16 power meters for BBTX, result total 64 words. A DMA

transact uploads all 64 words in one shot.

When BBTX power meter DMA already opened, call this API again will get

error DFE_ERR_ALREADY_OPENED.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 24

Arguments
hDfe [in] DFE device handle

cppDmaId [in] CPP/DMA channel Id

 0 ~ 31, open with specified channel

 DFE_FL_CPP_OPEN_ANY, open with any available

channel

cppDescripId [in] CPP/DMA descriptor Id

 0 ~ 127, open with specified descriptor

 DFE_FL_CPP_OPEN_ANY, open with any available

descriptor

iqnChnl [in] IQN2 CTL Ingress channel number, 0 ~ 15

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_CPP_DMA_NOT_AVAILABLE, if CPP/DMA channel not available

DFE_ERR_CPP_DESCRIP_NOT_AVAILABLE, if CPP/Descriptor not available

DFE_ERR_ALREADY_OPENED, if BBTX power meter DMA already opened

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.21 Close BBTX Power Meter DMA

Close BBTX Power Meter DMA and free recourses.

Prototype
DFE_Err Dfe_closeBbtxPowmtr

(

 DFE_Handle hDfe

);

Description
Close BBTX power meter DMA and free resources allocated by

Dfe_openBbtxPowmtrDma().

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_CPP_DMA_NOT_VALID, if CPP/DMA handle not valid

Constrains

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 25

1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_openBbtxPowmtrDma() has called OK.

6.22 Enable BBTX Power Meter DMA

Enable BBTX Power Meter DMA.

Prototype
DFE_Err Dfe_enableBbtxPowmtr

(

DFE_Handle hDfe,

Uint32 pmId

);

Description
Enable CPP/DMA for BBTX Power Meter DMA by doing following

1) Set dma_ssel to sense ALT_BBTX_PWRMTR
2) Set txpm_auxint_mask to (1u << pmId)

When power meter of pmId completes a measurement, ALT_BBTX_PWRMTR

interrupt will trigger CPP/DMA to start transferring.

Arguments
hDfe [in] DFE device handle

pmId [in] Id of BBTX power meter that triggers CPP/DMA

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_CPP_DMA_NOT_VALID, if CPP/DMA handle not valid

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_openBbtxPowmtrDma() has called OK.

6.23 Disable BBTX Power Meter DMA

Disable BBTX Power Meter DMA.

Prototype
DFE_Err Dfe_disableBbtxPowmtr

(

 DFE_Handle hDfe

);

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 26

Description
Disable BBTX power meter DMA by doing following steps,

1) Clear txpm_auxint_mask, cut off BBTX power meter complete signal
to CPP/DMA

2) Change dma_ssel not to sense any signal

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_CPP_DMA_NOT_VALID, if CPP/DMA handle not valid

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_openBbtxPowmtrDma() has called OK.

6.24 Program BBRX Gain

Program BBRX AxCs with new gains.

Prototype
DFE_Err Dfe_progBbrxGain

(

 DFE_Handle hDfe,

 Uint32 numAxCs,

 Uint32 axc[],

 float gain[]

);

Description
Write new BBRX AxCs’ gains to shadow memory. The range of gain is -

48.16dB ~ +96.3dB. When gain less than -48.2dB, samples are clamped to

0.

NOTE, Dfe_issueSyncUpdateBbrxGain should be called later to let

hardware copy gains from shadow to working memory.

Arguments
hDfe [in] DFE device handle

numAxCs [in] number of AxCs whose gains are to be changed

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 27

axc [in] array of AxCs whose gains are to be changed

gain [in] array of new gains, in dB

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateBbtxGain () should be called later to copy

gains to working memory.

6.25 Issue Sync Update BBRX Gain

Issue sync update BBRX gain to new values.

Prototype
DFE_Err Dfe_issueSyncUpdateBbrxGain

(

 DFE_Handle hDfe,

 Uint32 ct,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to copy BBRX gains from shadow to working memory.

Dfe_getSyncStatus() should be called later to check if the sync has

come.

NOTE, in order to make gains effectively,

dfe.bb.bbrxif_axc_config0.axc_valid bit have be ‘1’, and

dfe.bb.bbrxif_axc_config0.beagc_mode value must be in range 0 ~ 3.

Arguments
hDfe [in] DFE device handle

ct [in] carrier type

ssel [in] sync select to copy gains from shadow to

working memory.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 28

1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.26 Get BBRX Gain Update Complete

Get BBRX gain update complete status.

Prototype
DFE_Err Dfe_getBbrxGainUpdateComplete

(

 DFE_Handle hDfe,

 Uint32 ct,

 Uint32 *complete

);

Description
Get BBRX gain update complete status. The API first reads

rxgain_update_status, if corresponding ct bit is clear, then the update

is still in progress. Otherwise, it further reads back and returns the

update complete interrupt status.

Arguments
hDfe [in] DFE device handle

ct [in] carrier type

complete [out] buffer of update complete status

 0 = still in progress

 1 = update complete

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL HwGetStatus() failed

Constrains
4) hDfe should be a valid handle opened by Dfe_open().
5) DFE PLL and PSCs shall be already up running.
6) DFE has loaded target config and completed initialize sequence.

6.27 Program BBRX Power Meter

Program BBRX power meter with new configuration.

Prototype
DFE_Err Dfe_progBbrxPowmtr

(

DFE_Handle hDfe,

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 29

Uint32 pmId,

 DFE_BbrxPowmtrConfig *mtrCfg

);

Description
Write new BBRX power meter configuration.

// BBTX power meter config

typedef struct

{

 // enable power meter function

 DfeFl_BbPowMtrEnable enable;

 // carrier type

 Uint32 countSource;

 // power meter input source

 DfeFl_BbPowMtrInSource inSource;

 // tdd mode

 DfeFl_BbPowMtrTddMode tddMode;

 // delay from sync

 Uint32 syncDly;

 // meter interval

 Uint32 interval;

 // integration period

 Uint32 intgPd;

 // count of measurements, i.e. count of intervals

Uint32 powUptIntvl;

 // RX Maximum full scale power in dB for the programmed power

interval time.

 // Used by feed forward power update.

 // Value is in units of 0.05dB resolution

 Uint32 maxdB

} DFE_BbrxPowmtrConfig;

NOTE, Dfe_issueSyncUpdateBbrxPowmtr should be called later to let

hardware take the configuration.

Arguments
hDfe [in] DFE device handle

pmId [in] BBRX power meter Id, 0 ~ 15

mtrCfg [in] new meter configuration

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateBbrxPowmtr() should be called later to let

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 30

hardware take new configuration.

6.28 Issue Sync Update BBRX Power Meter

Issue sync update BBRX power meter to new configuration.

Prototype
DFE_Err Dfe_issueSyncUpdateBbrxPowmtr

(

 DFE_Handle hDfe,

 Uint32 pmId,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to let BBRX power meter run with new configuration.

Dfe_getSyncStatus() may be called later to check if the sync has come.

NOTE, Both dfe.bb.bbrxif_axc_config0.axc_valid bit and

dfe.bb.bbrxif_axc_config1.pm_en bit have to be set ‘1’, in order to

make power meter run measurement.

Arguments
hDfe [in] DFE device handle

pmId [in] BBRX power meter Id, 0 ~ 15

ssel [in] sync select to update power meter

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.29 Clear BBRX Power Meter Done Status

Clear BBRX power meter complete interrupt status.

Prototype
DFE_Err Dfe_clearBbrx PowmtrDoneIntrStatus
(

 DFE_Handle hDfe,

 Uint32 pmId

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 31

);

Description
Clear complete interrupt status of a BBRX power meter.

Arguments
hDfe [in] DFE device handle

pmId [in] BBRX power meter Id, 0 ~ 15

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.30 Get BBRX Power Meter Done Status

Get BBRX power meter complete interrupt status.

Prototype
DFE_Err Dfe_getBbrxPowmtrDoneIntrStatus

(

 DFE_Handle hDfe,

 Uint32 pmId,

 Uint32 *complete

);

Description
Get complete interrupt status of a BBRX power meter.

Arguments
hDfe [in] DFE device handle

pmId [in] BBRX power meter Id, 0 ~ 15

complete [out] BBRX power meter complete status,

 0 = measurement not complete yet

 1 = measurement complete

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constrains
1) hDfe should be a valid handle opened by Dfe_open().

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 32

2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.31 Read BBRX Power Meter

Read BBRX power meter result via CPU.

Prototype
DFE_Err Dfe_readBbrxPowmtr

(

 DFE_Handle hDfe,

 Uint32 pmId,

 float *peak,

 float *rms

);

Description
Read peak and RMS power results of a BBRX power meter via CPU. It reads

DFE registers directly and convert them to friendly values in dB.

The API doesn’t wait for a new measurement; it read back whatever

current result.

NOTE, Both dfe.bb.bbrxif_axc_config0.axc_valid bit and

dfe.bb.bbrxif_axc_config1.pm_en bit have to be set ‘1’, in order to

make power meter run measurement.

Arguments
hDfe [in] DFE device handle

pmId [in] BBRX power meter Id, 0 ~ 15

peak [out] peak power of AxC

rms [out] RMS power of AxC

Return Value
DFE_ERR_NONE, if API complete programmed properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.32 Open BBRX Power Meter DMA

Open CPP/DMA for reading BBTX power meters.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 33

Prototype
DFE_Err Dfe_openBbrxPowmtrDma

(

 DFE_Handle hDfe,

 Uint32 cppDmaId,

 Uint32 cppDescripId,

 Uint32 iqnChnl

);

Description
Allocate CPP/DMA channel and descriptor for BBRX power meter results

uploading.

Every power meter results 4 words, first twos for peak power, last twos

for RMS power. Both peak power and RMS power are formatted in floating

point (26 bit mantissa + 6 bit exponent). The mantissa is a <10.16>

format.

Word# Bit[31..16] Bit[15..0]

0 Not Used Peak power

Bit[15..6], 10-bits integer portion of

mantissa.

Bit[5..0], 6-bits exponent (of 2-based)

1 Not Used Peak power

16-bits fraction portion of mantissa.

2 Not Used RMS power

Bit[15..6], 10-bits integer portion of

mantissa.

Bit[5..0], 6-bits exponent (of 2-based)

3 Not Used RMS power

16-bits fraction portion of mantissa.

There’re total 16 power meters for BBRX, result total 64 words. A DMA

transact uploads all 64 words in one shot.

When BBRX power meter DMA already opened, call this API again will get

error DFE_ERR_ALREADY_OPENED.

Arguments
hDfe [in] DFE device handle

cppDmaId [in] CPP/DMA channel Id

 0 ~ 31, open with specified channel

 DFE_FL_CPP_OPEN_ANY, open with any available

channel

cppDescripId [in] CPP/DMA descriptor Id

 0 ~ 127, open with specified descriptor

 DFE_FL_CPP_OPEN_ANY, open with any available

descriptor

iqnChnl [in] IQN2 CTL Ingress channel number, 0 ~ 15

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_CPP_DMA_NOT_AVAILABLE, if CPP/DMA channel not available

DFE_ERR_CPP_DESCRIP_NOT_AVAILABLE, if CPP/Descriptor not available

DFE_ERR_ALREADY_OPENED, if BBRX power meter DMA already opened

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 34

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.33 Close BBRX Power Meter DMA

Close BBRX Power Meter DMA and free recourses.

Prototype
DFE_Err Dfe_closeBbrxPowmtr

(

 DFE_Handle hDfe

);

Description
Close BBRX power meter DMA and free resources allocated by

Dfe_openBbrxPowmtrDma().

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_CPP_DMA_NOT_VALID, if CPP/DMA handle not valid

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_openBbrxPowmtrDma() has called OK.

6.34 Enable BBRX Power Meter DMA

Enable BBRX Power Meter DMA.

Prototype
DFE_Err Dfe_enableBbrxPowmtr

(

DFE_Handle hDfe,

Uint32 pmId

);

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 35

Description
Enable CPP/DMA for BBRX Power Meter DMA by doing following

1) Set dma_ssel to sense ALT_BBRX_PWRMTR
2) Set rxpm_auxint_mask to (1u << pmId)

When power meter of pmId completes a measurement, ALT_BBRX_PWRMTR

interrupt will trigger CPP/DMA to start transferring.

Arguments
hDfe [in] DFE device handle

pmId [in] Id of BBRX power meter that triggers CPP/DMA

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_CPP_DMA_NOT_VALID, if CPP/DMA handle not valid

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_openBbrxPowmtrDma() has called OK.

6.35 Disable BBRX Power Meter DMA

Disable BBRX Power Meter DMA.

Prototype
DFE_Err Dfe_disableBbrxPowmtr

(

 DFE_Handle hDfe

);

Description
Disable BBRX power meter DMA by doing following steps,

 Clear rxpm_auxint_mask, cut off BBRX power meter complete signal

to CPP/DMA

 Change dma_ssel not to sense any signal

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_CPP_DMA_NOT_VALID, if CPP/DMA handle not valid

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 36

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_openBbrxPowmtrDma() has called OK.

6.36 Enable Disable BB AID Loopback

Enable/Disable BB AID loopback.

Prototype
DFE_Err Dfe_enableDisableBbaidLoopback

(

 DFE_Handle hDfe,

 Uint32 enable

);

Description
BB AID loopback is very useful to test IQ data flow before DFE.

For LTE the loop is like,

 BB DL buffer  Queue  IQN2 (PktDMA, AID2)  DFE (BB_AID)  IQN2

(AID2, PktDMA)  BB UL Buffer;

For WCDMA the loop is like,

 BB DL buffer  IQN2 (DIO2, AID2)  DFE (BB_AID)  IQN2 (AID2, DIO2)

 BB UL buffer

Set enable to ‘1’ to enable BB AID loopback; clear it to ‘0’ to disable

BB AID loopback.

NOTE, BB AID loopback isn’t working well when AxCs having different

rates. In this case, BB Buf loopback can be used, see

Dfe_progBbbufLoopback().

Arguments
hDfe [in] DFE device handle

Enable [in] 1 to enable BB AID loopback, 0 to disable

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 37

6.37 Program BB BUF Loopback

Program BB Buf loopback.

Prototype
DFE_Err Dfe_progBbbufLoopback

(

 DFE_Handle hDfe,

 DfeFl_BbLoopbackConfig *bufLoopback

);

Description
BB Buf loopback loops back IQ data flow before DFE DDUC.

For LTE,

BB DL buffer  Queue  IQN2 (PktDMA, AID2)  DFE (BBAID, BBBUF) 

DFE (BB_BUF, BB_AID)  IQN2 (AID2, PktDMA)  BB UL Buffer;

For WCDMA,

BB DL buffer  IQN2 (DIO2, AID2)  DFE (BB_AID, BB_BUF)  DFE

(BB_BUF, BB_AID) IQN2 (AID2, DIO2)  BB UL buffer

Typical setup for argument bufLoopback,

Use Case bufLoopback

member setup

Description

No loopback All = ‘0’ Normal operation mode

Two dducs loopback duc0ToDdc1 = ‘1’;

other = ‘0’

dduc0  dduc1

Four dducs loopback duc1ToDdc2 = ‘1’;

duc0ToDdc3 = ‘1’;

other = ‘0’

dduc0  dduc3

dduc1  dduc2

Eight dducs loopback duc3ToDdc4 = ‘1’;

duc2ToDdc5 = ‘1’;

duc1ToDdc6 = ‘1’;

duc0ToDdc7 = ‘1’;

other = ‘0’

dduc0  dduc7

dduc1  dduc6

dduc2  dduc5

dduc3  dduc4

Arguments
hDfe [in] DFE device handle

bufLoopback [in] Buf loopback configuration

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 38

6.38 Set BB AID UL Strobe Delay

Set BB AID UpLink strobe delay for specified carrier type.

Prototype
DFE_Err Dfe_setBbaidUlstrobeDelay

(

 DFE_Handle hDfe,

 Uint32 ct,

 Uint32 dly

);

Description
Set BB AID UL Strobe delay to adjust the time from the UL_STROBE to

when FRAME_START is generated. This API is very useful to align uplink

FRAME_START to the first sample in radio frame out of BB AID.

Arguments
hDfe [in] DFE device handle

ct [in] carrier type of the UL_STROBE

dly [in] Delay in carrier type samples

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.39 Program BB SigGen Ramp

Program BB Signal Generator to produce a ramp.

Prototype
DFE_Err Dfe_progBbsigGenRamp

(

 DFE_Handle hDfe,

 DfeFl_BbTestGenDev sigGenDev,

 Uint32 enable,

 Int16 startIq[2],

 Int16 stopIq[2],

 Int16 slopeIq[2]

);

Description
Program a BB signal geneator to produce a ramp. The startIq[0],

stopIq[0], and slopeIq[0] are used to control I bus; startIq[1],

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 39

stopIq[1], and slopeIq[1] are used to control Q bus. The rules should

be followed,

1) startIq <= stopIq
2) (stopIq – startIq) % slopeIq = 0

When startIq equal to stopIq and slopeIq is 0, a constant is produced.

NOTE: BB AID signal generator produces same ramp to all BBTX channels.

Arguments
hDfe [in] DFE device handle

sigGenDev [in] BB SigGen device

Enable [in] 1 to enable; 0 to disable

startIq [in] ramp start values for I bus and Q bus

stopIq [in] ramp stop values for I bus and Q bus

slopeIq [in] ramp step values for I bus and Q bus

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.40 Issue Sync Update BB SigGen

Issue sync update BB Signal Generator.

Prototype
DFE_Err Dfe_issueSyncUpdateBbsigGen

(

 DFE_Handle hDfe,

 DfeFl_BbTestGenDev sigGenDev,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync update BB SigGen. Dfe_getSyncStatus() can be called later to

check if the sync has come.

When sync ssel comes, the ramp restarts from start value and step up

the slope value per clock. When accumulated value equal to stop value,

the ramp restarts again.

Arguments
hDfe [in] DFE device handle

sigGenDev [in] BB SigGen device

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 40

ssel [in] sync select to drive BB SigGen

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.41 Program BB TestBus

Program BB Test Bus.

Prototype
DFE_Err Dfe_progBbtestbus

(

 DFE_Handle hDfe,

 DfeFl_BbTestCbCtrl testCbCtrl,

 Uint32 testCbAxc

);

Description
DFE has many test probe points scattered over all sub-modules. CB can

be used to capture a train of IQ bus signals at the probe.

The API enables the specified BB probe to CB interface.

NOTE, all test probes “AND together” shares single CB interface. So

software should enable no more than one probe at any time. LLD

internally disables all probes first before arm a new one.

Arguments
hDfe [in] DFE device handle

testCbCtrl [in] probe position

testCbAxc [in] probe axc/buf number

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 41

3) DFE has loaded target config and completed initialize sequence.

6.42 Program DDUC Mixer NCO Frequency

Program DDUC Mixer NCO frequency.

Prototype
DFE_Err Dfe_progDducMixerNCO

(

 DFE_Handle hDfe,

Uint32 dducDev,

float refClock,

 float freq[12]

);

Description
Write new DDUC Mixer NCO to shadow memory, this is only in the static

frequency mode. The precision of the frequency is refClock/2^48.

NOTE, Dfe_issueSyncUpdateDducMixerNCO () should be called later to let

hardware copy gains from shadow to working memory.

Arguments
hDfe [in] DFE device handle

dducDev [in] Dduc Id, 0 ~ 3

refClock [in] reference sample rate

freq [in] array of frequency value

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateDducMixerNCO () should be called later to copy

gains to working memory.

6.43 Issue Sync Update DDUC Mixer NCO Frequency

Issue sync update DDUC Mixer NCO frequency to new values.

Prototype
DFE_Err Dfe_issueSyncUpdateDducMixerNCO

(

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 42

 DFE_Handle hDfe,

 Uint32 dducDev,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to copy DDUC Mixer NCO frequency from shadow to working

memory. Dfe_getSyncStatus() should be called later to check if the sync

has come.

Arguments
hDfe [in] DFE device handle

dducDev [in] Dduc Id, 0 ~ 3

ssel [in] sync select to copy gains from shadow to

working memory.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.44 Program DDUC Mixer Phase

Program DDUC Mixer phase with new values.

Prototype
DFE_Err Dfe_progDducMixerPhase

(

 DFE_Handle hDfe,

 Uint32 dducDev,

 float phase[12]

);

Description
Write new DDUC Mixer phase to shadow memory. The precision for the

phase is 360/65536 degree.

NOTE, Dfe_issueSyncUpdateDducMixerPhase () should be called later to

let hardware copy gains from shadow to working memory.

Arguments
hDfe [in] DFE device handle

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 43

dducDev [in] Dduc Id, 0 ~ 3

phase [in] array of new phase, in degree

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateDducMixerPhase () should be called later to

copy gains to working memory.

6.45 Issue Sync Update DDUC Mixer Phase

Issue sync update DDUC Mixer phase to new values.

Prototype
DFE_Err Dfe_issueSyncUpdateDducMixerPhase

(

 DFE_Handle hDfe,

 Uint32 dducDev,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to copy DDUC Mixer phase from shadow to working memory.

Dfe_getSyncStatus() should be called later to check if the sync has

come.

Arguments
hDfe [in] DFE device handle

dducDev [in] Dduc Id, 0 ~ 3

ssel [in] sync select to copy gains from shadow to

working memory.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 44

6.46 Program DDUC Farrow Phase

Program DDUC Farrow Phase with new values.

Prototype
DFE_Err Dfe_progDducFarrowPhase

(

 DFE_Handle hDfe,

Uint32 dducDev,

Uint32 fifo[12],

 float phase[12]

);

Description
Write new DDUC Farrow phase to shadow memory. The fifo is from 0 ~ 63.

The phase range is -0.5 ~ 0.5.

NOTE, Dfe_issueSyncUpdateDducFarrowPhase () should be called later to

let hardware copy gains from shadow to working memory.

Arguments
hDfe [in] DFE device handle

dducDev [in] Dduc Id, 0 ~ 3

fifo [in] array of fifo

phase [in] array of new phase

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateDducFarrowPhase () should be called later to

copy gains to working memory.

6.47 Issue Sync Update DDUC Farrow Phase

Issue sync update DDUC Farrow phase to new values.

Prototype
DFE_Err Dfe_issueSyncUpdateDducFarrowPhase

(

 DFE_Handle hDfe,

 Uint32 dducDev,

 DfeFl_MiscSyncGenSig ssel

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 45

);

Description
Issue sync to copy DDUC farrow phase from shadow to working memory.

Dfe_getSyncStatus() should be called later to check if the sync has

come.

Arguments
hDfe [in] DFE device handle

dducDev [in] Dduc Id, 0 ~ 3

ssel [in] sync select to copy gains from shadow to

working memory.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.48 Program Distributor Map

Program DDUC distributor map.

Prototype
DFE_Err Dfe_progDducDistMap

(

 DFE_Handle hDfe,

 Uint32 dducDev,

 Uint32 rxSel[12],

 Uint32 chanSel[12]

);

Description
Write new DDUC distributor map to shadow memory. Each rxSel and chanSel

value is associated with one DDUC channel. The first 4 channels are for

mixer0, the second 4 channels are for mixer1 and the last 4 channels

are for mixer2.

Arguments
hDfe [in] DFE device handle

dducDev [in] Dduc Id, 0 ~ 3

rxSel [in] array of rx selection

 0: from Rx

 1: from feedback

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 46

chanSel [in] array of chan selection, which channel from

selected rx.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateDducDistMap () should be called later to copy

gains to working memory.

6.49 Issue Sync Update Distributor Map

Issue sync update DDUC distributor map to new values.

Prototype
DFE_Err Dfe_issueSyncUpdateDducDistMap

(

 DFE_Handle hDfe,

 Uint32 dducDev,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to copy DDUC distributor map from shadow to working memory.

Dfe_getSyncStatus() should be called later to check if the sync has

come.

Arguments
hDfe [in] DFE device handle

dducDev [in] Dduc Id, 0 ~ 3

ssel [in] sync select to copy gains from shadow to

working memory.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 47

6.50 Program Summer Shift

Program Summer shift.

Prototype
DFE_Err Dfe_progSummerShift

(

 DFE_Handle hDfe,

 Uint32 cfrId,

 Uint32 strId,

 int gain

);

Description
Write new Summer shift. The range of gain is -36dB ~ 6dB, with step

6dB.

Arguments
hDfe [in] DFE device handle

cfrId [in] cfr Id, 0 ~ 1

StrId [in] stream Id, 0 ~ 1

gain [in] new gain, in dB

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.51 Program Summer Map

Program Summer map.

Prototype
DFE_Err Dfe_progSummerMap

(

DFE_Handle hDfe,

Uint32 cfrId,

Uint32 strId,

 Uint32 sumMap[4]

);

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 48

Description
Write new Summer map configuration.

NOTE, Dfe_issueSyncUpdateSummerMap () should be called later to let

hardware take the configuration.

Arguments
hDfe [in] DFE device handle

cfrId [in] Cfr Id, 0 ~ 1

strId [in] stream Id, 0 ~ 1

sumMap [in] summer map for 4 DDUC. Each word uses the 12

LSB bits to map 12 carriers for each DDUC.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateSummerMap() should be called later to let

hardware take new configuration.

6.52 Issue Sync Update Summer Map

Issue sync update Summer map to new configuration.

Prototype
DFE_Err Dfe_issueSyncUpdateSummerMap

(

 DFE_Handle hDfe,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to let Summer run with new configuration.

Dfe_getSyncStatus() may be called later to check if the sync has come.

Arguments
hDfe [in] DFE device handle

ssel [in] sync select to update power meter

Return Value

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 49

DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.53 Program CFR Coefficients

Program CFR coefficients.

Prototype
DFE_Err Dfe_progCfrCoeff

(

 DFE_Handle hDfe,

Uint32 cfrDev,

Uint32 numCoeffs,

 Uint32int *cfrCoeff_i,

 Uint32int *cfrCoeff_q

);

Description
Write new Cfr coefficients to the shadow memory. The range of each

coefficient is 0 ~ 4095. The maximum number of coefficients is 256 for

each Cfr instance. It is shared by all antennas in each Cfr instance.

NOTE, Dfe_issueSyncUpdateCfrCoeff () should be called later to let

hardware copy gains from shadow to working memory.

Arguments
hDfe [in] DFE device handle

cfrDev [in] Cfr device Id, 0 - 1

numCoeffs [in] number of coefficients

cfrCoeff_i [in] pointer to the real part coefficient

cfrCoeff_q [in] pointer to the image part coefficient

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateCfrCoeff () should be called later to copy

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 50

gains to working memory.

6.54 Issue Sync Update CFR Coefficients

Issue sync update Cfr Coefficients.

Prototype
DFE_Err Dfe_issueSyncUpdateCfrCoeff

(

 DFE_Handle hDfe,

Uint32 cfrDev,

Uint32 coeffType,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync update Cfr coefficients. Dfe_getSyncStatus() can be called

later to check if the sync has come.

Arguments
hDfe [in] DFE device handle

cfrDev [in] Cfr device Id, 0 - 1

coeffType [in] Cfr coefficient type,

 0 means the base coefficient

 1 means the half delay coefficient

ssel [in] sync select to drive BB SigGen

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.55 Program CFR preGain

Program CFR preGain.

Prototype
DFE_Err Dfe_progCfrPreGain

(

DFE_Handle hDfe,

Uint32 cfrDev,

DfeFl_CfrPath cfrPath,

float gainGain

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 51

);

Description
Write new Cfr preGain to shadow memory. The range is –Inf ~ 6dB.

NOTE, Dfe_issueSyncUpdateCfrPreGain () should be called later to let

hardware copy gains from shadow to working memory.

Arguments
hDfe [in] DFE device handle

cfrDev [in] Cfr device Id, 0 - 1

cfrPath [in] Cfr path Id, 0 - 1

gainGain [in] Cfr pre gain value in dB

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateCfrPreGain() should be called later to let

hardware take new configuration.

6.56 Issue Sync Update CFR preGain

Issue sync update CFR preGain.

Prototype
DFE_Err Dfe_issueSyncUpdatCfrPreGain

(

 DFE_Handle hDfe,

Uint32 cfrDev,

DfeFl_CfrPath cfrPath,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to copy CFR pre gain from shadow to working memory.

Dfe_getSyncStatus() should be called later to check if the sync has

come.

Arguments
hDfe [in] DFE device handle

cfrDev [in] Cfr device Id, 0 - 1

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 52

cfrPath [in] Cfr path Id, 0 - 1

ssel [in] sync select to copy gains from shadow to

working memory.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.57 Program CFR postGain

Program CFR postGain.

Prototype
DFE_Err Dfe_progCfrPostGain

(

DFE_Handle hDfe,

Uint32 cfrDev,

DfeFl_CfrPath cfrPath,

float gainGain

);

Description
Write new Cfr postGain to shadow memory. The range is –Inf ~ 6dB.

NOTE, Dfe_issueSyncUpdateCfrPostGain () should be called later to let

hardware copy gains from shadow to working memory.

Arguments
hDfe [in] DFE device handle

cfrDev [in] Cfr device Id, 0 - 1

cfrPath [in] Cfr path Id, 0 - 1

gainGain [in] Cfr post gain value in dB

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 53

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateCfrPostGain() should be called later to let

hardware take new configuration.

6.58 Issue Sync Update CFR postGain

Issue sync update CFR postGain.

Prototype
DFE_Err Dfe_issueSyncUpdatCfrPostGain

(

 DFE_Handle hDfe,

Uint32 cfrDev,

DfeFl_CfrPath cfrPath,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to copy CFR pre gain from shadow to working memory.

Dfe_getSyncStatus() should be called later to check if the sync has

come.

Arguments
hDfe [in] DFE device handle

cfrDev [in] Cfr device Id, 0 - 1

cfrPath [in] Cfr path Id, 0 - 1

ssel [in] sync select to copy gains from shadow to

working memory.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.59 Program CFR Protection Gain

Program CFR protection Gain.

Prototype

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 54

DFE_Err Dfe_progCfrProtGain

(

DFE_Handle hDfe,

Uint32 cfrDev,

DfeFl_CfrPath cfrPath,

float gainGain

);

Description
Write new Cfr protection gain. It is a backoff gain when PA protection

is in alarm mode. The range is –Inf ~ 6dB.

Arguments
hDfe [in] DFE device handle

cfrDev [in] Cfr device Id, 0 - 1

cfrPath [in] Cfr path Id, 0 - 1

gainGain [in] Cfr protection gain value in dB

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.60 Program TX Mixer

Program TX mixer.

Prototype
DFE_Err Dfe_progTxMixer

(

DFE_Handle hDfe,

DfeFl_TxPath txPath,

float refClock,

 float freq[2]

);

Description
Write new Tx Mixer NCO frequency to shadow memory. The precision is

refClock/2^48.

NOTE, Dfe_issueSyncUpdateTxMixer () should be called later to let

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 55

hardware copy gains from shadow to working memory.

Arguments
hDfe [in] DFE device handle

txPath [in] Tx path Id, 0 - 1

refClock [in] reference clock

freq [in] frequency value

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateTxMixer() should be called later to let

hardware take new configuration.

6.61 Issue Sync Update TX Mixer

Issue sync update TX Mixer.

Prototype
DFE_Err Dfe_issueSyncUpdateTxMixer

(

DFE_Handle hDfe,

DfeFl_TxPath txPath,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to let TX Mixer run with new frequency. Dfe_getSyncStatus()

may be called later to check if the sync has come.

Arguments
hDfe [in] DFE device handle

txPath [in] Tx path Id, 0 ~ 1

ssel [in] sync select to update power meter

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 56

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.62 Program TX PA Protection

Program Tx PA protection.

Prototype
DFE_Err Dfe_progTxPaProtection

(

 DFE_Handle hDfe,

 DfeFl_TxDev txDev,

 DFE_TxPAprotPeak txPAprotPeak,

 DFE_TxPAprotRms txPAprotRms,

 Uint32 mask

);

Description
Write new Tx PA protection configuration.

typedef struct

{

 // square clipper threshold

 Uint32 threshold;

 // clipper counter threshold (C1)

 Uint32 cc_thr;

 // peak threshold (TH0)

 Uint32 TH0;

 // peak counter threshold (C0)

 Uint32 peak_thr;

 // peakgain counter threshold (C2)

 Uint32 peakgain_thr;

} DFE_TxPAprotPeak;

typedef struct

{

 // mu_p for IIR

 Uint32 mu0;

 // mu_q for IIR

 Uint32 mu1;

 // RMS threshold to reduce CFR gain(TH1)

 Uint32 TH1;

 // RMS threshold to shut down (TH2)

 Uint32 TH2;

 // RMS threshold to peak approaching saturation (TH4)

 Uint32 TH4;

 // threshold selection for a1

 Uint32 th1Sel;

 // threshold selection for a2

 Uint32 th2Sel;

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 57

 // threshold selection for a6

 Uint32 th6Sel;

} DFE_TxPAprotRms;

a1 = 1, RMS power is greater than TH1, the CFR gain will be reduced;

a2 = 1, RMS power is greater than TH2, the TX output will be shut down.

a3 = 1, RMS power gain is less than 1, the power is saturating.

a4 = 1, peak gain counter is greater than peakgain_thr, peak is

clipping.

a5 = 1, circular clipper counter is greater than cc_thr, peak is

clipping.

a6 = 1, RMS power is greater than TH4, power is approaching saturation.

a7 = 1, peak counter is greater than peak_thr, peak is approaching

saturation.

Arguments
hDfe [in] DFE device handle

txDev [in] Tx Dev Id, 0 ~ 3

txPAprotPeak [in] Tx PA protection for peak adjustment

txPAProtRms [in] Tx PA protection for rms adjustment

mask [in] Tx PA protection mask configuration for

stopDPD interrupt, the 5 LSB bits correspond to a5,

a4, a3, a2 and a1

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.63 Get TX PA Protection Interrupt Status

Get Tx PA protection interrupt status.

Prototype
DFE_Err Dfe_getTxPAprotIntrStatus

(

 DFE_Handle hDfe,

 DfeFl_TxPaIntrpt *txPAprotIntr

);

Description
Get Tx PA protection interrupt status of one Tx path.

Interrupt 1: a1 = 1;

Interrupt 2: a2 = 1;

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 58

Interrupt 3: a3 = 1;

Interrupt 4: a4 = 1 or a5 = 1;

Interrupt 5: a6 = 1;

Interrupt 6: a7 = 1;

Shutdown: a2 = 1;

lowCFRgain: a1 = 1;

stopDPD: programmable with a1, a2, a3, a4, a5 (programmable

 mask, then OR all unmasked bits)

Arguments
hDfe [in] DFE device handle

txPAprotIntr [out] Tx PA protection interrupt status

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.64 Clear TX PA Protection Interrupt Status

Clear TX PA protection interrupt status.

Prototype
DFE_Err Dfe_clearTxPAprotIntrStatus

(

 DFE_Handle hDfe,

DfeFl_TxDev txDev

);

Description
Clear complete interrupt status of a TX PA protection.

Arguments
hDfe [in] DFE device handle

txDev [in] Tx device Id, 0 ~ 3

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 59

3) DFE has loaded target config and completed initialize sequence.

6.65 Read TX PA Protection Power Status

Read Tx PA protection internal power status.

Prototype
DFE_Err Dfe_getTxPAprotPwrStatus

(

 DFE_Handle hDfe,

DfeFl_TxDev txDev,

Uint32 clrRead,

 DFE_TxPAprotPwrStatus *txPAprotPwrStatus

);

Description
Read Tx PA protection internal status of one Tx path.

typedef struct

{

 // maximum magnitude of D3

 Uint32 mag;

 // IIR output at D50

 Uint32 d50;

 // IIR output at D51

 Uint32 d51;

} DFE_TxPAprotPwrStatus;

Arguments
hDfe [in] DFE device handle

txDev [in] Tx device Id, 0 ~ 1

clrRead [in] flag to set clear after reading for magnitude

 0 means no clear after reading

 1 means clear after reading

txPAprotPwrStatus [out] Tx PA protection internal status

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 60

6.66 Program JESD Tx to Lane Map

Program JESD Tx bus to lane map.

Prototype
DFE_Err Dfe_mapJesdTx2Lane

(

 Uint32 lane,

 DFE_JesdTxLaneMapPos laneMap[4]

);

Description
Program how to fill time slots of a lane with Tx bus time slots.

A Tx bus consists of four time slots. A Tx bus time slot, an element of

laneMap[], is selected by the bus# and slot# of the bus.

// Jesd Tx bus to lane map

typedef struct

{

 // bus#, one of DfeFl_JesdTxTxBus (I0, Q0, I1, Q1)

Uint32 bus;

// slot#, 0 ~ 3

 Uint32 busPos;

} DFE_JesdTxLaneMapPos;

A lane also consists of four time slots.

 laneMap[0] is mapping to lane time slot 0

 laneMap[1] is mapping to lane time slot 1

 laneMap[2] is mapping to lane time slot 2

 laneMap[3] is mapping to lane time slot 3

For example, TX0 has two interleaved antenna streams, A0 and A1, which

are mapping to two lanes, lane0 and lane1, A0 => lane0, A1 => lane1.

TX0 bus format,

Bus# Slot0 Slot1 Slot2 Slot3

0 (TX0_I) A0_i A1_i Don’t care Don’t care

1 (TX0_Q) A0_q A1_q Don’t care Don’t care

Lane bus format

Lane# Slot0 Slot1 Slot2 Slot3

0 (lane0) A0_i A0_q Don’t care Don’t care

1 (lane1) A1_i A1_q Don’t care Don’t care

Then laneMap for lane0 should be,

 laneMap[0] laneMap[1] laneMap[2] laneMap[3]

Bus# 0 1 Don’t care Don’t care

Slot# 0 0 Don’t care Don’t care

Then laneMap for lane1 should be,

 laneMap[0] laneMap[1] laneMap[2] laneMap[3]

Bus# 0 1 Don’t care Don’t care

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 61

Slot# 1 1 Don’t care Don’t care

Arguments
hDfe [in] DFE device handle

lane [in] Tx lane#

laneMap [in] Tx bus slot map

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.67 Program JESD Tx SigGen Ramp

Program JESDTX Signal Generator to produce a ramp.

Prototype
DFE_Err Dfe_progJesdTxSigGenRamp

(

 DFE_Handle hDfe,

 DfeFl_JesdTxSignalGen sigGenDev,

 Uint32 enable,

 Int32 start,

 Int32 stop,

 Int32 slope

);

Description
Program a JESDTX signal generator to produce a ramp. The rules should

be followed,

1) start <= stop
2) (stop – start) % slope = 0
3) Start/stop/slope range, -131072 ~ 131071

When start equal to stop and slope is 0, a constant is produced.

Arguments
hDfe [in] DFE device handle

sigGenDev [in] JESD TX SigGen device

Enable [in] 1 to enable; 0 to disable

Start [in] ramp start values for the bus

Stop [in] ramp stop values for the bus

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 62

slope [in] ramp step values for the bus

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.68 Issue Sync Update JESDTX SigGen

Issue sync update JESDTX Signal Generator.

Prototype
DFE_Err Dfe_issueSyncUpdateJesdTxSigGen

(

 DFE_Handle hDfe,

 CSL_ DfeJesdTxSignalGen sigGenDev,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync update JESDTX SigGen. Dfe_getSyncStatus() can be called

later to check if the sync has come.

When sync ssel comes, the ramp restarts from start value and step up

the slope value per clock. When accumulated value equal to stop value,

the ramp restarts again.

Arguments
hDfe [in] DFE device handle

sigGenDev [in] BB SigGen device

ssel [in] sync select to drive BB SigGen

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 63

6.69 Program JESD Tx Testbus

Program JESDTX Test Bus.

Prototype
DFE_Err Dfe_progJesdTxTestbus

(

 DFE_Handle hDfe,

 DfeFl_JesdTxTestBusSel tp

);

Description
DFE has many test probe points scattered over all sub-modules. CB can

be used to capture a train of IQ bus signals at the probe.

The API enables the specified JESDTX test probe to CB interface.

NOTE, all test probes “AND together” shares single CB interface. So

software should enable no more than one probe at any time. LLD

internally disables all probes first before arm a new one.

Arguments
hDfe [in] DFE device handle

tp [in] probe position

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.70 Get JESD Tx Link Status

Get JESDTX link status.

Prototype
DFE_Err Dfe_getJesdTxLinkStatus

(

 DFE_Handle hDfe,

 DFE_JesdTxLinkStatus *linkStatus

);

Description
The API get back following Tx link status,

// Jesd Tx link status

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 64

typedef struct

{

// first sync request received for the link

// 0 – not seen first sync request

// 1 – seen first sync request

 Uint32 firstSyncRequest[DFE_FL_JESD_NUM_LINK];

 // error count as reported over SYNC~ interface.

 Uint32 syncErrCount[DFE_FL_JESD_NUM_LINK];

 // SYSREF alignment counter bits

 Uint32 sysrefAlignCount;

// captured interrupt bit for sysref_request_assert

// 0 – sysref request not asserted

// 1 – sysref request asserted

 Uint32 sysrefReqAssert;

 // captured interrupt bit for sysref_request_deassert

// 0 – sysref request not de-asserted

// 1 – sysref request de-asserted

 Uint32 sysrefReqDeassert;

 // captured interrupt bit for sysref_err on the link

// 0 – no sysref error

// 1 – sysref error

 Uint32 sysrefErr[DFE_FL_JESD_NUM_LINK];

} DFE_JesdTxLinkStatus;

Arguments
hDfe [in] DFE device handle

linkStatus [out] pointer to link status buffer

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.71 Get JESD Tx Lane Status

Get JESDTX lanes status.

Prototype
DFE_Err Dfe_getJesdTxLaneStatus

(

 DFE_Handle hDfe,

 DFE_JesdTxLaneStatus *laneStatus

);

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 65

Description
The API get back following Tx lane status,

// Jesd Tx lane status

typedef struct

{

 // synchronization state machine status for lane

 Uint32 syncState[DFE_FL_JESD_NUM_LANE];

 // FIFO status

 // 0 - fifo not empty; 1 - fifo has been empty

 Uint32 fifoEmpty[DFE_FL_JESD_NUM_LANE];

 // 0 - no read error; 1 - fifo read error

 Uint32 fifoReadErr[DFE_FL_JESD_NUM_LANE];

 // 0 - fifo not full; 1 - fifo has been full

 Uint32 fifoFull[DFE_FL_JESD_NUM_LANE];

 // 0 - no write error; 1 - fifo write error

 Uint32 fifoWriteErr[DFE_FL_JESD_NUM_LANE];

} DFE_JesdTxLaneStatus;

Arguments
hDfe [in] DFE device handle

laneStatus [out] pointer to lane status buffer

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.72 Clear JESD Tx Link Errors

Clear JESDTX link errors

Prototype
DFE_Err Dfe_clearJesdTxLinkErrors

(

 DFE_Handle hDfe

);

Description
The API clears following Tx link status,

 sysrefReqAssert

 sysrefReqDeassert

 sysrefErr[DFE_FL_JESD_NUM_LINK] for all links

 syncErrCount[DFE_FL_JESD_NUM_LINK] for all links

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 66

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.73 Clear JESD Tx Lane Errors

Clear JESDTX lane errors

Prototype
DFE_Err Dfe_clearJesdTxLaneErrors

(

 DFE_Handle hDfe

);

Description
The API clears following Tx lane status,

 fifoEmpty[DFE_FL_JESD_NUM_LANE] for all lanes

 fifoReadErr[DFE_FL_JESD_NUM_LANE] for all lanes

 fifoFull[DFE_FL_JESD_NUM_LANE] for all anes

 fifoWriteErr[DFE_FL_JESD_NUM_LANE] for all lanes

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
4) hDfe should be a valid handle opened by Dfe_open().
5) DFE PLL and PSCs shall be already up running.
6) DFE has loaded target config and completed initialize sequence.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 67

6.74 Program JESD Lane to Rx Map

Program JESD lane to Rx bus map.

Prototype
DFE_Err Dfe_mapJesdLane2Rx

(

 DFE_Handle hDfe,

 Uint32 rxBus,

 AVV_JesdRxBusMapPos busMap[4]

);

Description
Program how to fill time slots of a RX bus with lane time slots.

A Rx lane consists of four time slots. A Rx bus time slot, an element

of busMap[], is selected by the lane# and slot# of the lane.

// Jesd Rx lane to bus map

typedef struct

{

 // Rx lane#, 0 ~ 3

 Uint32 lane;

 // lane time slot

 Uint32 lanePos;

 // if zero data

 Uint32 zeroBits;

} DFE_JesdRxBusMapPos;

A Rx bus also consists of four time slots.

 busMap[0] is mapping to bus time slot 0

 busMap[1] is mapping to bus time slot 1

 busMap[2] is mapping to bus time slot 2

 busMap[3] is mapping to bus time slot 3

For example, two Rx lanes, lane0 and lane, are mapping to RX0, which

will carry two interleaved antenna streams A0 and A1, lane0 => A0,

lane1 => A1.

RX0 bus format,

Bus# Slot0 Slot1 Slot2 Slot3

0 (RX0_I) A0_i A1_i Don’t care Don’t care

1 (RX0_Q) A0_q A1_q Don’t care Don’t care

Lane bus format

Lane# Slot0 Slot1 Slot2 Slot3

0 (lane0) A0_i A0_q Don’t care Don’t care

1 (lane1) A1_i A1_q Don’t care Don’t care

Then busMap for RX0_I should be,

 busMap[0] busMap[1] busMap[2] busMap[3]

lane# 0 1 Don’t care Don’t care

Slot# 0 0 Don’t care Don’t care

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 68

Then busMap for RX0_Q should be,

 busMap[0] busMap[1] busMap[2] busMap[3]

lane# 0 1 Don’t care Don’t care

Slot# 1 1 Don’t care Don’t care

Arguments
hDfe [in] DFE device handle

rxBus [in] Rx bus#

busMap [in] Rx lane slot map

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.75 Program JESD Loopback

Program JESD loopbacks for sync_n, lanes or links.

Prototype
DFE_Err Dfe_progJesdLoopback

(

 DFE_Handle hDfe,

 Uint32 lpbkSync[DFE_FL_JESD_NUM_LINK];

 DfeFl_JesdRxLoopbackConfig lpbkLaneLink;

);

Description
Enable/disable sync_n, lanes/links loopback between JESDTX and JESDRX.

Arguments
hDfe [in] DFE device handle

lpbkSync [in] 1: enable rx sync out loopback to tx sync_n

lpbkLaneLink [in] lane/link loopback config

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 69

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.76 Program JESD Rx Testbus

Program JESDRX Test Bus.

Prototype
DFE_Err Dfe_progJesdRxTestbus

(

DFE_Handle hDfe,

DfeFl_JesdRxTestBusSel tp

);

Description
DFE has many test probe points scattered over all sub-modules. CB can

be used to capture a train of IQ bus signals at the probe.

The API enables the specified JESDRX test probe to CB interface.

NOTE, all test probes “AND together” shares single CB interface. So

software should enable no more than one probe at any time. LLD

internally disables all probes first before arm a new one.

Arguments
hDfe [in] DFE device handle

testCbCtrl [in] probe position

testCbAxc [in] probe axc/buf number

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.77 Get JESD Rx Link Status

Get JESDRX link status.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 70

Prototype
DFE_Err Dfe_getJesdRxLinkStatus

(

 DFE_Handle hDfe,

 DFE_JesdRxLinkStatus *linkStatus

);

Description
The API get back following Rx link status,

// Jesd Rx link status

typedef struct

{

 // SYSREF alignment counter bits

 Uint32 sysrefAlignCount;

 // captured interrupt bit for sysref_request_assert

 // 0 – sysref request not asserted

 // 1 – sysref request asserted

 Uint32 sysrefReqAssert;

 // captured interrupt bit for sysref_request_deassert

 // 0 – sysref request not de-asserted

 // 1 – sysref request de-asserted

 Uint32 sysrefReqDeassert;

 // captured interrupt bit for sysref_err on the link

 // 0 – no sysref error

 // 1 – sysref error

 Uint32 sysrefErr[DFE_FL_JESD_NUM_LINK];

} DFE_JesdRxLinkStatus;

Arguments
hDfe [in] DFE device handle

linkStatus [out] pointer to link status buffer

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.78 Get JESD Rx Lane Status

Get JESDRX lanes status.

Prototype
DFE_Err Dfe_getJesdRxLaneStatus

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 71

(

 DFE_Handle hDfe,

 DFE_JesdRxLaneStatus *laneStatus

);

Description
The API get back following Tx lane status,

// Jesd Rx lane status

typedef struct

{

 // code group synchronization state machine status for lane

 Uint32 syncStatecodeState[DFE_FL_JESD_NUM_LANE];

 // frame synchronization state machine status for lane

Uint32 frameState[DFE_FL_JESD_NUM_LANE];

// 0 - no error; 1 - 8B/10B disparity error

 Uint32 decDispErr[DFE_FL_JESD_NUM_LANE];

 // 0 - no error; 1 - 8B/10B not-in-table code error

 Uint32 decCodeErr[DFE_FL_JESD_NUM_LANE];

 // 0 - no error; 1 - code group sync error

 Uint32 codeSyncErr[DFE_FL_JESD_NUM_LANE];

 // 0 - no error; 1 - elastic buffer match error

 //(first non-/K/ doesn't match match_ctrl and match_data)

 Uint32 bufMatchErr[DFE_FL_JESD_NUM_LANE];

 // 0 - no error; 1 - elastic buffer overflow error (bad RBD value)

 Uint32 bufOverflowErr[DFE_FL_JESD_NUM_LANE];

 // 0 - no error; 1 - link configuration error

 Uint32 linkConfigErr[DFE_FL_JESD_NUM_LANE];

 // 0 - no error; 1 - frame alignment error

 Uint32 frameAlignErr[DFE_FL_JESD_NUM_LANE];

 // 0 - no error; 1 - multiframe alignment error

 Uint32 multiframeAlignErr[DFE_FL_JESD_NUM_LANE];

 // FIFO status

 // 0 - normal; 1 - fifo empty

 Uint32 fifoEmpty[DFE_FL_JESD_NUM_LANE];

 // 0 - normal; 1 - fifo read error

 Uint32 fifoReadErr[DFE_FL_JESD_NUM_LANE];

 // 0 - normal; 1 - fifo full

 Uint32 fifoFull[DFE_FL_JESD_NUM_LANE];

 // 0 - normal; 1 - fifo write error

 Uint32 fifoWriteErr[DFE_FL_JESD_NUM_LANE];

 // 0 - normal; 1 - test sequence verification failed

 Uint32 testSeqErr[DFE_FL_JESD_NUM_LANE];

} DFE_JesdRxLaneStatus;

Arguments
hDfe [in] DFE device handle

laneStatus [out] pointer to lane status buffer

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

DFE_ERR_INVALID_PARAMS, if invalid parameters

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 72

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.79 Clear JESD Rx Link Error

Clear JESDRX link errors

Prototype
DFE_Err Dfe_clearJesdRxLinkErrors

(

 DFE_Handle hDfe

);

Description
The API clears following Tx link status,

 sysrefReqAssert

 sysrefReqDeassert

 sysrefErr[DFE_FL_JESD_NUM_LINK] for all links

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.80 Clear JESD Rx Lane Error

Clear JESDRX lane errors

Prototype
DFE_Err Dfe_clearJesdRxLaneErrors

(

 DFE_Handle hDfe

);

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 73

Description
The API clears following lane status for all Tx lanes,

 decDispErr[DFE_FL_JESD_NUM_LANE];

 decCodeErr[DFE_FL_JESD_NUM_LANE];

 codeSyncErr[DFE_FL_JESD_NUM_LANE];

 bufMatchErr[DFE_FL_JESD_NUM_LANE];

 bufOverflowErr[DFE_FL_JESD_NUM_LANE];

 linkConfigErr[DFE_FL_JESD_NUM_LANE];

 frameAlignErr[DFE_FL_JESD_NUM_LANE];

 multiframeAlignErr[DFE_FL_JESD_NUM_LANE];

 fifoEmpty[DFE_FL_JESD_NUM_LANE];

 fifoReadErr[DFE_FL_JESD_NUM_LANE];

 fifoFull[DFE_FL_JESD_NUM_LANE];

 fifoWriteErr[DFE_FL_JESD_NUM_LANE];

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.81 Program RX IBPM Global

Program global settings of Rx IBPM.

Prototype
DFE_Err Dfe_progRxIbpmGlobal

(

 DFE_Handle hDfe,

 DfeFl_RxPowmtrReadMode readMode,

 float histThresh1,

 float histThresh2,

 CSL_Uint64 unityMagsq

);

Description
Program global settings of RX IBPM. The power meters measure RMS and

peak powers at Rx block input. There’re total 4 IBPMs, which can be

individually configured by Dfe_progRxIbpm() to meter one antenna.

IBPM has two reading modes, hardware interrupt mode and software

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 74

handshake mode.

In the hardware interrupt mode, the power meters run per the programmed

configuration and set interrupts on a per antenna basis when a new set

of results have been computed and captured in the read registers. It is

the responsibility of the user to read the results before the next set

of results are computed and captured in the read registers.

In the software handshake mode, the power meters run per the programmed

configuration. The user makes a request to read a current set of

results and waits until receiving an acknowledge signal from DFE

hardware before reading. Upon receiving the request DFE completes the

current power meter cycle, stores the results for reading, sets the

acknowledge and halts any further updates until the user resets the

request.

Each IBPM has two histogram counters to count number of samples whose

magnitude is above the specified histThresh.

To convert between raw register values to friendly floatings in dB, LLD

needs knowing the raw value of unity magnitude square (unityMagSq),

i.e. I^2 + Q^2.

Arguments
hDfe [in] DFE device handle

readMode [in] meter reading mode

histThread1 [in] threshold in dB for histogram counter1

histThread2 [in] threshold in dB for histogram counter2

unityMagsq [in] raw value of unity magnitude square

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.82 Program RX IBPM

Program settings of an Rx IBPM.

Prototype
DFE_Err Dfe_progRxIbpm

(

 DFE_Handle hDfe,

 Uint32 pmId,

 Uint32 oneShot,

 Uint32 meterMode,

 Uint32 syncDelay,

 Uint32 nSamples,

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 75

 Uint32 interval

);

Description
Program settings of an individual RX IBPM, which meters RMS and peak

power at Rx block input for one antenna.

When a sync event comes, IBPM starts a new meter cycle after syncDelay

samples. The cycle completes at integration time of nSamples. When

oneShot is enabled(1), IBPM does no more measurement until next sync

event; when oneShot is disabled(0), IBPM starts a new measure after

interval samples elapsed, and this repeats every interval. The interval

shall be no less than integration time + syncDelay, otherwise IBPM

never completes.

When meterMode is 0, IBPM is disabled; when meterMode is 1, IBPM is

running according to configuration of sync delay, integration period

and interval; when meter mode is 2, IBPM is running over a gated

stream.

Arguments
hDfe [in] DFE device handle

pmId [in] power meter device ID

oneShot [in] one shot mode

meterMode [in] meter operational mode

 0 = off

 1 = normal mode

 2 = gated mode

syncDelay [in] delay from sync event, in samples

nSamples [in] integration period, in samples

interval [in] interval period, in samples

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.83 Issue Sync Update RX IBPM

Issue sync updates an Rx IBPM.

Prototype
DFE_Err Dfe_issueSyncUpdateRxIbpm

(

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 76

 DFE_Handle hDfe,

 Uint32 pmId,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync update a RX IBPM. Dfe_getSyncStatus() can be called later to

check if the sync has come.

When sync ssel comes, the power meter starts a new measurement cycle.

Arguments
hDfe [in] DFE device handle

pmId [in] Rx IBPM device Id

ssel [in] sync select

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.84 Issue RX IBPM Read Request

Issue read request to an Rx IBPM for software handshake mode.

Prototype
DFE_Err Dfe_issueRxIbpmReadRequest

(

 DFE_Handle hDfe,

 Uint32 pmId

);

Description
The API is applied for the software handshake mode only. In this mode,

the user makes a request (via this API) to read a current set of

results and waits until receiving an acknowledge signal (via polling

Dfe_getRxIbpmReadAck()) from DFE hardware before reading. Upon

receiving the request DFE completes the current power meter cycle,

stores the results for reading, sets the acknowledge and halts any

further updates until the user resets the request (via

Dfe_readRxIbpmResult()).

Arguments

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 77

hDfe [in] DFE device handle

pmId [in] Rx IBPM device Id

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.85 Get RX IBPM Read Ack

Get read acknowledge status of an Rx IBPM for software handshake mode.

Prototype
DFE_Err Dfe_getRxIbpmReadAck

(

 DFE_Handle hDfe,

 Uint32 pmId,

 Uint32 *ackRead

);

Description
The API is applied for the software handshake mode only. In this mode,

the user makes a request (via Dfe_issueRxIbpmReadRequest()) to read a

current set of results and waits until receiving an acknowledge signal

(via polling this API) from DFE hardware before reading. Upon

receiving the request DFE completes the current power meter cycle,

stores the results for reading, sets the acknowledge and halts any

further updates until the user resets the request (via

Dfe_readRxIbpmResult()).

Arguments
hDfe [in] DFE device handle

pmId [in] Rx IBPM device Id

ackRead [in] acknowledge status

 0, still updating

 1, read acknowledged

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

DFE_ERR_INVALID_PARAMS, if invalid parameters

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 78

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.86 Read RX IBPM Result

Read back results of an Rx IBPM.

Prototype
DFE_Err Dfe_readRxIbpmResult

(

 DFE_Handle hDfe,

Uint32 pmId,

 float *power,

 float *peak,

 Uint32 *histCount1,

 Uint32 *histCount2

);

Description
Read back results of a running RX IBPM. After retrieves all results,

for hardware interrupt mode, the API writes done reading flag to DFE;

for software handshake mode, the API clears read request, which was set

by Dfe_IssueRxIbpmReadRequest().

Arguments
hDfe [in] DFE device handle

pmId [in] Rx IBPM device Id

power [out] Power value

peak [out] peak value

histCount1 [out] the number of samples which power is greater

than the histogram one threshold

histCount2 [out] the number of samples which power is greater

than the histogram two threshold

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.87 Program RX Equalizer

Program RX Equalizer.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 79

Prototype
DFE_Err Dfe_progRxEqr

(

DFE_Handle hDfe,

Uint32 rxDev,

Uint32 shift,

Uint32 numCoeff,

DFE_RxEqrTaps *RxEqrTaps

);

Description
Write new RX Equalizer to shadow memory. The range of each tap is -1 ~

0.9998. Eqr bypass needs to be disabled.

NOTE, Dfe_issueSyncUpdateRxEqr () should be called later to let

hardware copy gains from shadow to working memory.

typedef struct

{

 // ii taps

 float taps_ii[DFE_FL_RX_EQR_LEN];

 // iq taps

 float taps_iq[DFE_FL_RX_EQR_LEN];

 // qi taps

 float taps_qi[DFE_FL_RX_EQR_LEN];

 // qq taps

 float taps_qq[DFE_FL_RX_EQR_LEN];

} DFE_RxEqrTaps;

Arguments
hDfe [in] DFE device handle

rxDev [in] Rx Id, 0 ~ 3

shift [in] shift value, 0 ~ 3

numCoeff [in] number of coefficients

RxEqrTaps [in] pointer to the Rx Eqr taps

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateRxEqr () should be called later to copy EQ

taps to working memory.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 80

6.88 Issue Sync Update RX Equalizer

Issue sync update RX equalizer to new values.

Prototype
DFE_Err Dfe_issueSyncUpdateRxEqr

(

DFE_Handle hDfe,

Uint32 rxDev,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to copy Rx equalizer from shadow to working memory.

Dfe_getSyncStatus() should be called later to check if the sync has

come.

Arguments
hDfe [in] DFE device handle

rxDev [in] Rx Id, 0 ~ 3

ssel [in] sync select to copy gains from shadow to

working memory.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Only the FB block which matches with IO mux config will be

updated.

6.89 Program RX Mixer NCO

Program RX Mixer NCO frequency.

Prototype
DFE_Err Dfe_progDducMixerNCO

(

 DFE_Handle hDfe,

Uint32 rxDev,

float refClock,

 float freq

);

Description

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 81

Write new RX Mixer NCO to shadow memory. The precision of the frequency

is refClock/2^48. NCO bypass needs to be disabled.

NOTE, Dfe_issueSyncUpdateRxMixerNCO () should be called later to let

hardware copy gains from shadow to working memory.

Arguments
hDfe [in] DFE device handle

rxDev [in] Rx Id, 0 ~ 3

refClock [in] reference sample rate

freq [in] frequency value

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateRxMixerNCO () should be called later to copy

gains to working memory.

6.90 Issue Sync Update RX Mixer NCO Frequency

Issue sync update RX Mixer NCO frequency to new values.

Prototype
DFE_Err Dfe_issueSyncUpdateRxMixerNCO

(

 DFE_Handle hDfe,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to copy RX Mixer NCO frequency from shadow to working

memory. Dfe_getSyncStatus() should be called later to check if the sync

has come.

Arguments
hDfe [in] DFE device handle

ssel [in] sync select to copy gains from shadow to

working memory.

Return Value
DFE_ERR_NONE, if API complete properly

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 82

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.91 Program Rx Testbus

Program RX Testbus.

Prototype
DFE_Err Dfe_issueSyncUpdateRxTestbus

(

 DFE_Handle hDfe,

Uint32 top_ctrl,

Uint32 imb_ctrl,

Uint32 feagc_dc_ctrl

);

Description
Program RX Test bus.

Arguments
hDfe [in] DFE device handle

top_ctrl [in] top testbus control.

imb_ctrl [in] imb testbus control.

feagc_dc_ctrl [in] feagc_dc testbus control.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.92 Program FB Equalizer

Program FB Equalizer.

Prototype
DFE_Err Dfe_progFbEqr

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 83

(

DFE_Handle hDfe,

DfeFl_FbBlk FbBlkId,

Uint32 numCoeff,

 DFE_FbEqrTaps *FbEqrTaps

);

Description
Write new FB Equalizer to shadow memory. The range of each tap is -1 ~

0.9998.

NOTE, Dfe_issueSyncUpdateFbEqr should be called later to let hardware

copy gains from shadow to working memory.

typedef struct

{

 // ii taps

 float taps_ii[DFE_FL_FB_EQR_LEN];

 // iq taps

 float taps_iq[DFE_FL_FB_EQR_LEN];

 // qi taps

 float taps_qi[DFE_FL_FB_EQR_LEN];

 // qq taps

 float taps_qq[DFE_FL_FB_EQR_LEN];

} DFE_FbEqrTaps;

Arguments
hDfe [in] DFE device handle

FbBlkId [in] Fb block Id, 0 ~ 4

numCoeff [in] number of coefficients

FbEqrTaps [in] pointer to the Fb Eqr taps.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateFbEqr () should be called later to copy EQ

taps to working memory.

6.93 Issue Sync Update FB Equalizer

Issue sync update FB equalizer to new values.

Prototype
DFE_Err Dfe_issueSyncUpdateFbEqr

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 84

(

 DFE_Handle hDfe,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to copy Fb equalizer from shadow to working memory.

Dfe_getSyncStatus() should be called later to check if the sync has

come.

Arguments
hDfe [in] DFE device handle

ssel [in] sync select to copy gains from shadow to

working memory.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Only the FB block which matches with IO mux config will be

updated.

6.94 Program FB Mixer NCO

Program FB Mixer NCO.

Prototype
DFE_Err Dfe_progFbMixerNCO

(

DFE_Handle hDfe,

DfeFl_FbBlk FbBlkId,

float refClock,

 float freq

);

Description
Write new FB Mixer NCO frequency to shadow memory. The precision is

refClock/2^48.

NOTE, Dfe_issueSyncUpdateFbMixerNCO should be called later to let

hardware copy gains from shadow to working memory.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 85

Arguments
hDfe [in] DFE device handle

FbBlkId [in] Fb block Id, 0~4

refClock [in] Fb reference clock

freq [in] frequence value in degree

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateFbMixerNCO () should be called later to copy

NCO to working memory.

6.95 Issue Sync Update FB Mixer NCO

Issue sync update FB equalizer to new values.

Prototype
DFE_Err Dfe_issueSyncUpdateFbMixerNCO

(

 DFE_Handle hDfe,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to copy Fb mixer NCO from shadow to working memory.

Dfe_getSyncStatus() should be called later to check if the sync has

come.

Arguments
hDfe [in] DFE device handle

ssel [in] sync select to copy gains from shadow to

working memory.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 86

3) DFE has loaded target config and completed initialize sequence.
4) Only the FB block which matches with IO mux config will be

updated.

6.96 Program FB IO Mux

Program FB IO Mux.

Prototype
DFE_Err Dfe_progFbIOMux

(

DFE_Handle hDfe,

 DfeFl_FbIoMux ioMux

);

Description
Write new FB IO mux.

NOTE, Additional sync needs to be issued to set new values for EQ, gain

or NCO in the new Fb channel.

Arguments
hDfe [in] DFE device handle

ioMux [in] io mux mapping.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.97 Program FB pre-CB Gain

Program FB pre-CB gain.

Prototype
DFE_Err Dfe_progFbGain

(

DFE_Handle hDfe,

DfeFl_FbBlk FbBlkId,

 float FbGain[2]

);

Description

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 87

Write new FB pre-CB gain to shadow memory. The range of gain is -Inf ~

6.02dB. To check the gain changing through capture buffer, the

cb_output_select need to be enabled.

NOTE, Dfe_issueSyncUpdateFbGain should be called later to let hardware

copy gains from shadow to working memory.

Arguments
hDfe [in] DFE device handle

FbBlkId [in] Fb block Id, 0 ~ 4

FbGain [in] Array of Fb gain, [0] is real part and [1] is

image part.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_issueSyncUpdateFbGain () should be called later to copy gains

to working memory.

6.98 Issue Sync Update Fb pre-CB Gain

Issue sync update FB gain to new values.

Prototype
DFE_Err Dfe_issueSyncUpdateFbGain

(

 DFE_Handle hDfe,

 DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to copy Fb gains from shadow to working memory.

Dfe_getSyncStatus() should be called later to check if the sync has

come.

Arguments
hDfe [in] DFE device handle

ssel [in] sync select to copy gains from shadow to

working memory.

Return Value
DFE_ERR_NONE, if API complete properly

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 88

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Only the FB block which matches with IO mux config will be

updated.

6.99 Program CB Node Config

Program CB node configuration.

Prototype
DFE_Err Dfe_progCbNodecfg

(

 DFE_Handle hDfe,

 DfeFl_CbNodeCfg *nodeCfg

);

Description
Write new CB node configuration for one CB node.

NOTE, CB node ID defined as nodeCfg->cbNode is 0 ~ 8.

Node 0 = DPD input

Node 1 = DPD output

Node 2 = DDUC input (FB output, IQ interleaved)

Node 3 = FB, resampler input or output (FB input, IQ parallel)

Node 4 = CFR block0 input

Node 5 = CFR block1 input

Node 6 = CFR block0 output

Node 7 = CFR block1 output

Node 8 = testbus

Arguments
hDfe [in] DFE device handle

nodeCfg [in] CB node configuration

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 89

6.100 Program CB Buf Config

Program CB buf configuration.

Prototype
DFE_Err Dfe_progCbBufcfg

(

 DFE_Handle hDfe,

 DFE_CbBufCfg *bufCfg

);

Description
Write new CB buf configuration for one CB buffer.

NOTE, CB buf ID defined as bufCfg->cbSet.cbBuf is 0 ~ 3.

// CB buf configuration

typedef struct

{

 // cb buf mode set

 DfeFl_CbModeSet cbSet;

 // cb buf delay from sync

 Uint32 dly;

 // 0 = 1s/1c mode; 1 = 2s/1c mode

 Uint32 rate_mode;

 // capture buffer A fractional counter length minus 1; range 0-

15; value depends on the relative sampling rates for different buffers

 Uint32 frac_cnt;

 // fractional counter sync select

 Uint32 frac_cnt_ssel;

 // length counter sync select

 Uint32 len_cnt_ssel;

 // cb buf length, upto 8192 complex data

 Uint32 length;

} DFE_CbBufCfg;

Arguments
hDfe [in] DFE device handle

bufCfg [in] CB buffer configuration

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 90

6.101 Arm CB and Issue Sync

Arm CB and issue sync

Prototype
DFE_Err Dfe_armCbIssueSync

(

 DFE_Handle hDfe,

 DfeFl_MiscSyncGenSig ssel

);

Description
Arm CB and issue sync to prepare for capture. The cb buf mode is also

changed to capture mode.

Arguments
hDfe [in] DFE device handle

ssel [in] sync select to capture

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.102 Get CB Done Status

Get the capture buffer done status

Prototype
DFE_Err Dfe_getCbDoneStatus

(

DFE_Handle hDfe,

DfeFl_CbArm *cbDoneStatus

);

Description
The API gets back the cbDone Status.

Arguments

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 91

hDfe [in] DFE device handle

cbDoneStatus [out] pointer to cb done status

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.103 Read CB Buf

Read CB buf data via CPU.

Prototype
DFE_Err Dfe_readCbBuf

(

 DFE_Handle hDfe,

DfeFl_CbBuf cbBufId,

Uint32 cbLength,

Uint32 flag_18bit,

DfeFl_CbComplexInt *cbTemp,

 DfeFl_CbStatus *cbStatus,

 DFE_CbData *cbData

);

Description
Read CB buf data and CB status via CPU. It reads DFE registers

directly.

The API changes to MPU mode and capture the 16MSB or total 18bit buffer

based on requirement.

// CB data

typedef struct

{

 // I data

 Uint32 *Idata;

 // Q data

 Uint32 *Qdata;

} DFE_CbData;

Arguments
hDfe [in] DFE device handle

cBufId [in] Cb Buffer Id, 0 ~ 3

cbLength [in] Cb length, 0 ~ 8192

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 92

flag_18bit [in] flag to read 18bit buffer

 0 = 16bit MSB

 1 = 18bit

cbTemp [in] pointer to the temporary buffer, size 8192*4

bytes

cbStatus [out] pointer to the cb status

cbData [out] pointer to the cb data

Return Value
DFE_ERR_NONE, if API complete programmed properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.104 Open CB Buf DMA

Open CPP/DMA for reading CB buffer.

Prototype
DFE_Err Dfe_openCbBufDma

(

DFE_Handle hDfe,

Uint32 flag_18bit,

 Uint32 cppDmaId,

 Uint32 cppDescripId[8],

 Uint32 iqnChnl

);

Description
Allocate CPP/DMA channel and descriptor for CB buf reading.

Every CB buf has 8192 words for 16bit MSB and 8192 words for 2bit LSB.

Each word has I data in bit [31:16] and Q data in bit [15:0].

To transfer all 4 CB buffers, there are total 8 descriptors if all

18bit data are needed.

Arguments
hDfe [in] DFE device handle

flag_18bit [in] flag to read 18bit buffer

 0 = 16bit MSB

 1 = 18bit

cppDmaId [in] CPP/DMA channel Id

 0 ~ 31, open with specified channel

 DFE_FL_CPP_OPEN_ANY, open with any available

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 93

channel

cppDescripId [in] pointer to CPP/DMA descriptor Id

 0 ~ 127, open with specified descriptor

 DFE_FL_CPP_OPEN_ANY, open with any available

descriptor

iqnChnl [in] IQN2 CTL Ingress channel number, 0 ~ 15

Return Value
DFE_ERR_NONE, if API complete programmed properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_CPP_DMA_NOT_AVAILABLE, if CPP/DMA channel not available

DFE_ERR_CPP_DESCRIP_NOT_AVAILABLE, if CPP/Descriptor not available

DFE_ERR_ALREADY_OPENED, if BBTX power meter DMA already opened

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.105 Close CB Buf DMA

Close CB buf DMA and free recourses.

Prototype
DFE_Err Dfe_closeCbBufDma

(

 DFE_Handle hDfe

);

Description
Close Cb Buf DMA and free resources allocated by Dfe_openCbBufDma().

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_CPP_DMA_NOT_VALID, if CPP/DMA handle not valid

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_openCbBufDma() has called OK.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 94

6.106 Enable CB Buf DMA

Enable CB Buf DMA.

Prototype
DFE_Err Dfe_enableCbBufDma

(

DFE_Handle hDfe

);

Description
Enable CPP/DMA for CB Buf by setting dma_ssel to sense MPU sync.

MPU sync will trigger CPP/DMA to start transferring.

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_CPP_DMA_NOT_VALID, if CPP/DMA handle not valid

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_openCbBufDma() has called OK.

6.107 Disable CB Buf DMA

Disable CB Buf DMA.

Prototype
DFE_Err Dfe_disableCbBufDma

(

 DFE_Handle hDfe

);

Description
Disable CB buf DMA by changing dma_ssel not to sense any signal

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 95

DFE_ERR_CPP_DMA_NOT_VALID, if CPP/DMA handle not valid

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_openCbBufDma() has called OK.

6.108 Disable All TestBus

Disable all test bus probes.

Prototype
DFE_Err Dfe_disableAllTestbus

(

 DFE_Handle hDfe

);

Description
DFE has many test probe points scattered over all sub-modules. CB can

be used to capture a train of IQ bus signals at the probe.

All test probes “AND together” shares single CB interface. So software

should enable no more than one probe at any time.

The API clears all test probes which was programmed before.

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.109 Program DFE GPIO PinMux

Select pin function by programming DFE GPIO pinmux.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 96

Prototype
DFE_Err Dfe_progGpioPinMux

(

 DFE_Handle hDfe,

 DfeFl_MiscGpioPin pinId,

 DfeFl_MiscGpioMux muxSel

);

Description

Select pin function by programming DFE GPIO pinmux. There’re total 18 GPIOs, every

pin can be configured to be different function.

Pin Function Value Input/Output Description

NOTHING 0 Input Input only, not configured to

a function

GPIO_SYNC_IN0 1 Input General sync input 0

GPIO_SYNC_IN1 2 Input General sync input 1

JESD_SYNC_IN0 3 Input JESD sync inputs for

interfacing to data

converters which do not

support LVDS syncs

JESD_SYNC_IN1 4 Input

GPIO_SYNC_OUT0 8 Output General sync output 0

GPIO_SYNC_OUT1 9 Output General sync output 0

JESD_SYNC_OUT0 10 Output JESD sync outputs for

interfacing to data

converters which do not

support LVDS syncs

JESD_SYNC_OUT1 11 Output

FB_MUX_CNTL0 12 Output feedback mux control for

Marconi 0 FB_MUX_CNTL1 13 Output

FB_MUX_CNTL2 14 Output

FB_MUX_CNTL3 15 Output feedback mux control for

Marconi 1 FB_MUX_CNTL4 16 Output

FB_MUX_CNTL5 17 Output

DVGA_CNTL0 18 Output 8 bits DVGA controls

DVGA_CNTL1 19 Output

DVGA_CNTL2 20 Output

DVGA_CNTL3 21 Output

DVGA_CNTL4 22 Output

DVGA_CNTL5 23 Output

DVGA_CNTL6 24 Output

DVGA_CNTL7 25 Output

SYSREF_REQUEST 26 Output JESD SYSREF request output

MPU_DRIVE 27 Output Driven by MPU register write

Note: ALL pins (including those set to "nothing") also function as mpu

gpio read. If the pin is an output pin, the mpu gpio read will return

whatever is being output.

Arguments
hDfe [in] DFE device handle

pinId [in] GPIO pin ID

muxSel [in] select function of the pin

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 97

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.110 Set DFE GPIO Sync Out Source

Select sync source for GPIO Sync out pin.

Prototype
DFE_Err Dfe_setGpioSyncOutSource

(

 DFE_Handle hDfe,

 Uint32 syncoutId,

 DfeFl_MiscSyncGenSig ssel

);

Description

Select sync source for GPIO_SYNC_OUT pin.

Arguments
hDfe [in] DFE device handle

syncoutId [in] sync out pin, 0/1

ssel [in] sync select

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.111 Set DFE GPIO Bank Output

Write GPIO pins in bank mode.

Prototype
DFE_Err Dfe_setGpioBankOutput

(

 DFE_Handle hDfe,

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 98

 Uint32 bankOutput

);

Description
Write MPU GPIO Drive register to drive pin output. For pins configured

as MPU_DRIVE, DFE drives those pins per bankOutput value. For other

pins, it does no effective.

There’re total 18 GPIOs, one-to-one mapped to 18 LSBs of bankOutput.

Arguments
hDfe [in] DFE device handle

bankOutput [in] pin output bitmap value, bit0 driving pin0,

bit1 driving pin1, …, bit17 driving pin17.

 0 = drive low

 1 = drive high

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.112 Get DFE GPIO Bank Input

Read GPIO pins in bank mode.

Prototype
DFE_Err Dfe_getGpioBankInput

(

 DFE_Handle hDfe,

 Uint32 *bankInput

);

Description
Read current input status of GPIO pins.

There’re total 18 GPIOs, one-to-one mapped to 18 LSBs of *bankInput.

Arguments
hDfe [in] DFE device handle

bankInput [out] pin input bitmap value, bit0 is for pin0,

bit1 is for pin1, …, bit17 is for pin17.

 0 = input low

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 99

 1 = input high

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_QUERY, if CSL GetHwStatus() failed

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.113 Open Generic IO DMA

Open CPP/DMA for Generic IO.

Prototype
DFE_Err Dfe_openGenericDma

(

 DFE_Handle hDfe,

 Uint32 cppDmaId,

 Uint32 iqnChnlDl,

 Uint32 iqnChnlUl

);

Description
Open and allocate resources for generic IO DMA, which can be used to

read/write DFE registers and memories.

Generic IO DMA is using CPP/DMA embedded address mode. The DMA

descriptor is embedded at the beginning of the packet.

Generic IO DMA doesn’t support linked transfers. Each DMA packet can

transfer data size from one 32-bits word to 16K 32-bits words.

Upon the API returns DFE_ERR_NONE, generic IO DMA has already been

enabled and ready for use. Data available on iqnChnlDl starts CPP/DMA.

When generic IO DMA already opened, call this API again will get error

DFE_ERR_ALREADY_OPENED.

Arguments
hDfe [in] DFE device handle

cppDmaId [in] CPP/DMA channel Id

 0 ~ 31, open with specified channel

 DFE_FL_CPP_OPEN_ANY, open with any available

channel

iqnChnlDl [in] IQN2 CTL Egress channel number, 0 ~ 15

iqnChnlUl [in] IQN2 CTL Ingress channel number, 0 ~ 15

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 100

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_CPP_DMA_NOT_AVAILABLE, if CPP/DMA channel not available

DFE_ERR_ALREADY_OPENED, if generic IO DMA already opened

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Constrains
4) hDfe should be a valid handle opened by Dfe_open().
1) DFE PLL and PSCs shall be already up running.
2) DFE has loaded target config and completed initialize sequence.

6.114 Close Generic IO DMA

Close Cpp/DMA for Generic IO

Prototype
DFE_Err Dfe_closeGenericDma

(

 DFE_Handle hDfe

);

Description
Close generic IO DMA and free resources allocated by

Dfe_openGenericDma().

Arguments
hDfe [in] DFE device handle

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_CPP_DMA_NOT_VALID, if CPP/DMA handle not valid

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.
4) Dfe_openGenericDma() has called OK.

6.115 Prepare Generic DMA Embedded Header

Prepare CPP/DMA embedded header for generic IO request.

Prototype
DFE_Err Dfe_prepareGenericDmaHeader

(

 DFE_Handle hDfe,

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 101

 Uint32 *header

 DFE_GenericDmaReadWriteMode rwMode,

 Uint32 offsetAddrInDref,

 Uint32 sizeOrData

);

Description
The API helps building CPP/DMA embedded header that will be sent

together with data payload block. The size of the header is fixed 16

bytes, then followed data payload block.

The API supports three read/write modes,

 DFE_GENERIC_DMA_RW_MODE_WRITE_SINGLE_WORD, write single 32-bits

word to DFE. The sizeOrData has the sending value that will be

built into the embedded header. There’s no other payload to be

sent.

 DFE_GENERIC_DMA_RW_MODE_WRITE_MULTI_WORDS, write multiple 32-bits

words to DFE. The sizeOrData has the number of words of data

payload, which is immediately following the header. If number of

the payload words not multiples of 4, zero shall be padded to

fill the remaining words in the final line.

 DFE_GENERIC_DMA_RW_MODE_READ, read from DFE. The sizeOrData has

the number of words of read data, which will be received from

IQN2 CTL ingress channel, iqnChnlUl, specified when

Dfe_openGenericDma().

For writing, offsetAddrInDref is the destination 26-bit address within

DFE scope; for reading, it is the source 26-bit address within DFE

scope.

Arguments
hDfe [in] DFE device handle

header [out] pointer to packet header

rwMode [in] generic IO read/write mode

offsetAddrInDref [in] 26-bit address within DFE scope.

sizeOrData [in] size or data. For single word writing, it is

the data value; for other modes, it is number of

payload words in 32-bits.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_CPP_DMA_NOT_VALID, if CPP/DMA handle not valid

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 102

6.116 Enable Lut toggle

Enable Lut toggle for one dpd block.

Prototype
DFE_Err Dfe_enableToggle

(

 DFE_Handle hDfe,

 Uint32 blkId

);

Description
Enable the Lut toggle for one dpd block

Arguments
hDfe [in] DFE device handle

blkId [in] block Id [0:3]

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.117 SetSyncSel for Lut

Set sync selection for one dpd block.

Prototype
DFE_Err Dfe_setSyncSel

(

 DFE_Handle hDfe,

Uint32 blkId,

Uint32 synch

);

Description
Set synch selection for one dpd block

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 103

Arguments
hDfe [in] DFE device handle

blkId [in] block Id [0:3]

Synch [in] Synch:

 0: f_synch

 1: c_synch

 2: f_synch || c_synch

 3: the 'combined sync' generated internally

based on 'sync_b' and sync from 'poly2LUT'

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.118 Issue Sync Update Lut

Issue sync update Lut to new values.

Prototype
DFE_Err Dfe_issueSyncUpdateLut

(

DFE_Handle hDfe,

Uint32 numBlks,

Uint32 blkId[],

DfeFl_MiscSyncGenSig ssel

);

Description
Issue sync to switch Lut table for one block.

Arguments
hDfe [in] DFE device handle

numBlks [in] number of blocks which will be updated, [1:4]

blkId[] [in] array of block Ids which will be updated,

[0:3]

ssel [in] sync select to copy gains from shadow to

working memory.

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_HW_CTRL, if CSL HwControl() failed

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 104

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.119 Get Current Lut memory index

Get current Lut memory index for one dpd block.

Prototype
DFE_Err Dfe_setSyncSel

(

 DFE_Handle hDfe,

Uint32 blkId,

Uint32 *LutIdx

);

Description
Get the current Lut memory index for one dpd block. There are total 6

rows in one dpd block. There are total 3 cells in one row. Each cell

will return the Lut memory index. 0 means the datapath is using LUT0

(bottom half of memory), 1 means the datapath is using LUT1 (top half

of memory).

The LutIdx will store the results in bit masking format.

MSB B23 B22 B21 B20 … B3 B2 B1 B0

 Not

used

Row5,

cell2

Row5,

cell1

Row5,

cell0

… Not

used

Row0,

cell2

Row0,

cell1

Row0,

cell0

Arguments
hDfe [in] DFE device handle

blkId [in] block Id [0:3]

LutIdx [out] current Lut memory index

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.120 Program Lut table

Program Lut table for one dpd cell.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 105

Prototype
DFE_Err Dfe_setSyncSel

(

 DFE_Handle hDfe,

Uint32 blkId,

Uint32 rowId,

Uint32 cellId,

DFE_DpdData *DpdData

);

Description
Program Lut table for one cell. The dpd lut will be used in dpd

datapath after issue sync to update lut.

typedef struct _DFE_DpdData

{

 // lutGain

 DfeFl_DpdComplexInt lutGain;

 // lutSlope

 DfeFl_DpdComplexInt lutSlope;

} DFE_DpdData;

Arguments
hDfe [in] DFE device handle

blkId [in] block Id [0:3]

rowId [in] row Id [0:5]

cellId [in] cell Id [0:2]

DpdData [in] pointer to the dpd data

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.121 Get Dpd configuration

Read back dpd configuration.

Prototype
DFE_Err Dfe_getDpdCfg

(

 DFE_Handle hDfe,

DFE_DpdCfg *dpdCfg

);

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 106

Description
Read back the dpd configuration

typedef struct _DFE_DpdCfg

{

 // subchip mode

 uint32_t subchip_mode;

 // subsample

 uint32_t subsample;

 // dpd input scale

 uint32_t dpdInputScale;

 // x2 sqrt

 uint32_t x2_sqrt;

} DFE_DpdCfg;

Arguments
hDfe [in] DFE device handle

dpdCfg [out] pointer to the dpd configure

Return Value
DFE_ERR_NONE, if API complete properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

Constrains
1) hDfe should be a valid handle opened by Dfe_open().
2) DFE PLL and PSCs shall be already up running.
3) DFE has loaded target config and completed initialize sequence.

6.122 Load DPDA image

Load image to DPDA instruction RAM and lookup tables. Reset and initialize DPDA.

Prototype
DFE_Err Dfe_loadDpda

(

 DFE_Handle hDfe,

 Uint32 imageSize,

 DFE_RegPair *imagePtr

)

Description
The API

- disables the arbiter

- resets DPDA

- forces DPDA into the IDLE state

- clears interrupt mask and status registers

- clears command, test and debug registers

- clears the scalar and IG register files

- clears the stack

- loads the given image

- releases DPDA from reset

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 107

// (addr, data) register pair

typedef struct

{

 // offset address from DFE base address

 Uint32 addr;

 // data to/from addr

 Uint32 data;

} DFE_RegPair;

Arguments
hDfe [in] DFE device handle

igId [in] Identifies IG register, 0 ~ 63

igPtr [out] Points to value

Return Value
DFE_ERR_NONE, if API complete programmed properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constraints
1) hDfe should be a valid handle opened by Dfe_open().

6.123 Read DPDA IG register

Read value from DPDA IG register file.

Prototype
DFE_Err Dfe_writeDpdaIg

(

 DFE_Handle hDfe,

 Uint8 igId,

 Uint32 *igPtr

)

Description
The API reads a value from the given IG register.

Arguments
hDfe [in] DFE device handle

igId [in] Identifies IG register, 0 ~ 63

igPtr [out] Points to value

Return Value
DFE_ERR_NONE, if API complete programmed properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constraints
2) hDfe should be a valid handle opened by Dfe_open().

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 108

6.124 Read DPDA parameters

Read complex parameters from DPDA solution RAM.

Prototype
DFE_Err Dfe_readDpdaParams

(

 DFE_Handle hDfe,

 Uint16 lineId,

 Uint16 lineNum,

 float *paramTbl

)

Description
The API reads all parameters stored in the given lines from the

solution RAM. Note that each line stores 24 complex parameters. It

also converts the I and Q parts of each parameter from the custom

floating point format used by the DPDA and re-orders the parameters as

follows:

 for (i = 0; i < lineNum; i++) {

 for (j = 0; j < 8; j++) {

 for (k = 0; k < 3; k++) {

 paramTbl[24*2*i+8*2*k+2*j] = tmpTbl[24*2*i+3*2*j+k*2];

 paramTbl[24*2*i+8*2*k+2*j+1] = tmpTbl[24*2*i+3*2*j+k*2+1];

 }

 }

 }

Arguments
hDfe [in] DFE device handle

lineId [in] Identifies first line, 0 ~ 767

lineNum [in] Specifies number of lines, 0 ~ 767

paramTbl [out] Points to table of parameters. Even

locations store the I parts of the corresponding

parameters and odd locations the Q parts.

Return Value
DFE_ERR_NONE, if API complete programmed properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constraints
3) hDfe should be a valid handle opened by Dfe_open().

6.125 Read DPDA scalar register

Read complex value from DPDA scalar register file.

Prototype
DFE_Err Dfe_writeDpdaScalar

(

 DFE_Handle hDfe,

 Uint8 scalarId,

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 109

 float *iScalarPtr,

 float *qScalarPtr

)

Description
The API reads a complex value from the given scalar register and it

converts the I and Q parts of the complex value from the custom

floating point format used by DPDA.

Arguments
hDfe [in] DFE device handle

scalarId [in] Identifies scalar register, 0 ~ 63

iScalarPtr [in] Points to I part of scalar value

qScalarPtr [in] Points to Q part of scalar value

Return Value
DFE_ERR_NONE, if API complete programmed properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constraints
1) hDfe should be a valid handle opened by Dfe_open().

6.126 Start DPDA

Start DPDA.

Prototype
DFE_Err Dfe_startDpda

(

 DFE_Handle hDfe,

 Uint16 startAddress

)

Description
The API

- clears interrupt flag in the command register

- clears idle status, read status and processed status

- writes the given start address to the command register

- sets the interrupt flag in the command register

- polls the idle status until the DPDA returns to the idle state

Arguments
hDfe [in] DFE device handle

Uint16 [in] Specifies start address in the instruction

RAM, 0 ~ 4095

Return Value
DFE_ERR_NONE, if API complete programmed properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_INVALID_PARAMS, if invalid parameters

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 110

Constraints
1) hDfe should be a valid handle opened by Dfe_open().

6.127 Write DPDA IG register

Write value to DPDA IG register file.

Prototype
DFE_Err Dfe_writeDpdaIg

(

 DFE_Handle hDfe,

 Uint8 igId,

 Uint32 ig

)

Description
The API writes the given value to the given IG register.

Arguments
hDfe [in] DFE device handle

igId [in] Identifies IG register, 0 ~ 63

ig [in] Value

Return Value
DFE_ERR_NONE, if API complete programmed properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constraints
2) hDfe should be a valid handle opened by Dfe_open().

6.128 Write DPDA samples

Write samples to capture buffer. DPDA will read them from capture buffer.

Prototype
DFE_Err Dfe_writeDpdaSamples

(

 DFE_Handle hDfe,

 DfeFl_CbBuf cbBufId,

 Uint8 fbFlag,

 Uint16 cbLength,

 DfeFl_CbComplexInt *cbTemp,

 DFE_CbData *cbData

)

Description
For the given CB buffer, the API writes each given sample to the 16MSB

of the corresponding 18-bit CB sample and clears the 2 LSB. It sets

the buffer in fine mode and tags it as storing reference or feedback

samples. It also makes sure that the buffer won't skip chunks.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 111

// CB complex sample

typedef struct

{

 // real value

 Uint16 real;

 // image value

 Uint16 imag;

} DfeFl_CbComplexInt;

// CB data

typedef struct

{

 // I data

 Uint32 *Idata;

 // Q data

 Uint32 *Qdata;

} DFE_CbData;

Arguments
hDfe [in] DFE device handle

cBufId [in] Identifies CB buffer, 0 ~ 3

fbFlag [in] Indicates whether buffer is used for capturing

feedback signal

 0 = no feedback signal

 1 = feedback signal

cbLength [in] Specifies number of samples, 0 ~ 8192

cbTemp [in] Points to the temporary buffer, size 8192*4

bytes

cbData [in] Points to the cb data

Return Value
DFE_ERR_NONE, if API complete programmed properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constraints
1) hDfe should be a valid handle opened by Dfe_open().

6.129 Write DPDA scalar register

Write complex value to DPDA scalar register file.

Prototype
DFE_Err Dfe_writeDpdaScalar

(

 DFE_Handle hDfe,

 Uint8 scalarId,

 float iScalar,

 float qScalar

)

Description
The API converts the I and Q parts of the given complex value to the

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 112

custom floating point format used by DPDA and writes them to the given

scalar register.

Arguments
hDfe [in] DFE device handle

scalarId [in] Identifies scalar register, 0 ~ 63

iScalar [in] I part of scalar value

qScalar [in] Q part of scalar value

Return Value
DFE_ERR_NONE, if API complete programmed properly

DFE_ERR_INVALID_HANDLE, if hDfe is NULL

DFE_ERR_INVALID_PARAMS, if invalid parameters

Constraints
2) hDfe should be a valid handle opened by Dfe_open().

7 Integration

7.1 OSAL

The OSAL is the operating system abstraction layer which is used to port DFE LLD to a specific

OS. The OSAL callouts are implemented in the “dfe_osal.h” header file and need to be ported

by the application developers to their specific operating system.

7.1.1 Logging API

Internally DFE LLD uses the Dfe_osalLog macro to perform all logging operations. The

OSAL adaptation layer ports this macro to the following API prototype:-

void Osal_dfeLog(char* fmt, ...)

The parameter ‘fmt’ is a printf style formatted string. This should only be defined and used for

debugging purposes.

7.2 Integration on ARM Linux

DFE LLD works on the top of DFE_FL Function Level (FL) library. Both libraries are running

from Linux user space. DFE_FL FL API dfeFl_GetBaseAddress() should be customized to

use mmap() in un-cached mode to open the whole 48M-bytes window of DFE.

To move big chunks of data into/out of DFE memories, such as capture buffers and BBTX/RX

power meter results, the application should use DFE LLD together with UDMA/IQN2 user mode

driver.

Texas Instruments Incorporated Software Design Specification

Revision A DFE LLD

 Page 113

7.3 Integration on DSP SysBios

Both DFE LLD and CSL library are packaged in PDK. There’s no customization needed for

CSL.

To move big chunks of data into/out of DFE memories, such as capture buffers and BBTX/RX

power meter results, the application should use DFE LLD together with QMSS/CPPI/IQN2

LLDs.

8 Future Extensions

 Support of programming DPD LUTs

 Support of programming Poly2Lut

 Support of programming TX filter coefficeints

 Support of programming BeAGC

 Support of programming FeAGC

	1 Scope
	2 References
	3 Definitions
	4 Overview
	5 Design
	5.1 Objects and Limitations
	5.2 Software Resource Requirements
	5.3 Interface Data Structures
	5.4 DFE Peripheral Configuration

	6 DFE LLD APIs
	6.1 Open
	6.2 Close
	6.3 Load Target Configuration
	6.4 Soft Reset
	6.5 Initialization Sequence for Transmit Path
	6.6 Initialization Sequence for Receive Path
	6.7 Get Device Information
	6.8 Issue Sync
	6.9 Get Sync Status
	6.10 Program Sync Counter
	6.11 Issue Sync Start Sync Counter
	6.12 Program BBTX Gain
	6.13 Issue Sync Update BBTX Gain
	6.14 Get BBTX Gain Update Complete
	6.15 Program BBTX Power Meter
	6.16 Issue Sync Update BBTX Power Meter
	6.17 Clear BBTX Power Meter Done Status
	6.18 Get BBTX Power Meter Done Status
	6.19 Read BBTX Power Meter
	6.20 Open BBTX Power Meter DMA
	6.21 Close BBTX Power Meter DMA
	6.22 Enable BBTX Power Meter DMA
	6.23 Disable BBTX Power Meter DMA
	6.24 Program BBRX Gain
	6.25 Issue Sync Update BBRX Gain
	6.26 Get BBRX Gain Update Complete
	6.27 Program BBRX Power Meter
	6.28 Issue Sync Update BBRX Power Meter
	6.29 Clear BBRX Power Meter Done Status
	6.30 Get BBRX Power Meter Done Status
	6.31 Read BBRX Power Meter
	6.32 Open BBRX Power Meter DMA
	6.33 Close BBRX Power Meter DMA
	6.34 Enable BBRX Power Meter DMA
	6.35 Disable BBRX Power Meter DMA
	6.36 Enable Disable BB AID Loopback
	6.37 Program BB BUF Loopback
	6.38 Set BB AID UL Strobe Delay
	6.39 Program BB SigGen Ramp
	6.40 Issue Sync Update BB SigGen
	6.41 Program BB TestBus
	6.42 Program DDUC Mixer NCO Frequency
	6.43 Issue Sync Update DDUC Mixer NCO Frequency
	6.44 Program DDUC Mixer Phase
	6.45 Issue Sync Update DDUC Mixer Phase
	6.46 Program DDUC Farrow Phase
	6.47 Issue Sync Update DDUC Farrow Phase
	6.48 Program Distributor Map
	6.49 Issue Sync Update Distributor Map
	6.50 Program Summer Shift
	6.51 Program Summer Map
	6.52 Issue Sync Update Summer Map
	6.53 Program CFR Coefficients
	6.54 Issue Sync Update CFR Coefficients
	6.55 Program CFR preGain
	6.56 Issue Sync Update CFR preGain
	6.57 Program CFR postGain
	6.58 Issue Sync Update CFR postGain
	6.59 Program CFR Protection Gain
	6.60 Program TX Mixer
	6.61 Issue Sync Update TX Mixer
	6.62 Program TX PA Protection
	6.63 Get TX PA Protection Interrupt Status
	6.64 Clear TX PA Protection Interrupt Status
	6.65 Read TX PA Protection Power Status
	6.66 Program JESD Tx to Lane Map
	6.67 Program JESD Tx SigGen Ramp
	6.68 Issue Sync Update JESDTX SigGen
	6.69 Program JESD Tx Testbus
	6.70 Get JESD Tx Link Status
	6.71 Get JESD Tx Lane Status
	6.72 Clear JESD Tx Link Errors
	6.73 Clear JESD Tx Lane Errors
	6.74 Program JESD Lane to Rx Map
	6.75 Program JESD Loopback
	6.76 Program JESD Rx Testbus
	6.77 Get JESD Rx Link Status
	6.78 Get JESD Rx Lane Status
	6.79 Clear JESD Rx Link Error
	6.80 Clear JESD Rx Lane Error
	6.81 Program RX IBPM Global
	6.82 Program RX IBPM
	6.83 Issue Sync Update RX IBPM
	6.84 Issue RX IBPM Read Request
	6.85 Get RX IBPM Read Ack
	6.86 Read RX IBPM Result
	6.87 Program RX Equalizer
	6.88 Issue Sync Update RX Equalizer
	6.89 Program RX Mixer NCO
	6.90 Issue Sync Update RX Mixer NCO Frequency
	6.91 Program Rx Testbus
	6.92 Program FB Equalizer
	6.93 Issue Sync Update FB Equalizer
	6.94 Program FB Mixer NCO
	6.95 Issue Sync Update FB Mixer NCO
	6.96 Program FB IO Mux
	6.97 Program FB pre-CB Gain
	6.98 Issue Sync Update Fb pre-CB Gain
	6.99 Program CB Node Config
	6.100 Program CB Buf Config
	6.101 Arm CB and Issue Sync
	6.102 Get CB Done Status
	6.103 Read CB Buf
	6.104 Open CB Buf DMA
	6.105 Close CB Buf DMA
	6.106 Enable CB Buf DMA
	6.107 Disable CB Buf DMA
	6.108 Disable All TestBus
	6.109 Program DFE GPIO PinMux
	6.110 Set DFE GPIO Sync Out Source
	6.111 Set DFE GPIO Bank Output
	6.112 Get DFE GPIO Bank Input
	6.113 Open Generic IO DMA
	6.114 Close Generic IO DMA
	6.115 Prepare Generic DMA Embedded Header
	6.116 Enable Lut toggle
	6.117 SetSyncSel for Lut
	6.118 Issue Sync Update Lut
	6.119 Get Current Lut memory index
	6.120 Program Lut table
	6.121 Get Dpd configuration
	6.122 Load DPDA image
	6.123 Read DPDA IG register
	6.124 Read DPDA parameters
	6.125 Read DPDA scalar register
	6.126 Start DPDA
	6.127 Write DPDA IG register
	6.128 Write DPDA samples
	6.129 Write DPDA scalar register

	7 Integration
	7.1 OSAL
	7.1.1 Logging API

	7.2 Integration on ARM Linux
	7.3 Integration on DSP SysBios

	8 Future Extensions

