

ICSS I2C FIRMWARE DESIGN GUIDE

Document Version 1.1

Page 1 of 50

I2C PRU Firmware

Texas Instruments, Incorporated

20450 Century Boulevard

Germantown, MD 20874 USA

Applies to Product Release: 01.01.00.00
Publication Date: September 11, 2018

Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0

Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative

Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2018 Texas Instruments Incorporated - http://www.ti.com/

Document Version 1.1

Page 2 of 50

I2C PRU Firmware

This document is intended for users who are interested in getting more detailed understanding of

the firmware design. It discusses ICSS based I2C firmware implementation details along with any

features added on top of the basic I2C firmware i.e. SMBUS supports. It mentions the memory

maps, structures and software design flow of the firmware.

Note: Those who just want to use ICSS I2C firmware may not need to go through this

document

Document Version 1.1

Page 3 of 50

I2C PRU Firmware

Revision History

Version Date Description of changes Author(s)

1.0 04-Jan-18 Initial version Suraj Das

1.1 09-Sep-18
Added details on AM437x ICSS0 feature
enhancement

Frank Livingston

Document Version 1.1

Page 4 of 50

I2C PRU Firmware

TABLE OF CONTENTS

LIST OF FIGURES ... 6

LIST OF TABLES ... 7

1 INTRODUCTION .. 8

2 FEATURE SET .. 9

3 DESIGN DESCRIPTION .. 10

3.1 DESIGN LAYOUT .. 11
 Register Memory Map ... 11 3.1.1

 Register Description .. 12 3.1.2
3.1.2.1 I2C_COMMAND ... 12
3.1.2.2 I2C_BUF ... 13
3.1.2.3 I2C_CNT... 14
3.1.2.4 I2C_CON .. 14
3.1.2.5 I2C_SA ... 14
3.1.2.6 I2C_PRU_PIN .. 14
3.1.2.7 I2C_PRU_CMD_CODE ... 15
3.1.2.8 I2C_PRU_INST_ID .. 15
3.1.2.9 I2C_PRU_TX_DATA ... 15
3.1.2.10 I2C_PRU_RX_DATA .. 15

3.2 DESIGN CHALLENGE .. 16
 Pinmuxing using PRU. ... 16 3.2.1

 Pinmuxing using EDMA. ... 16 3.2.2

 Using IEP DIGIO pins. .. 17 3.2.3

3.3 PRU RESOURCE USAGE ... 18
 PRU Data RAM ... 18 3.3.1

3.3.1.1 Configuration Memory Region ... 18
3.3.1.2 Instance Memory Region .. 18

 Local Register .. 18 3.3.2

 Scratchpad ... 19 3.3.3

3.4 DESIGN THEORY .. 20
 Initialization Task .. 20 3.4.1

 Scheduler Task ... 22 3.4.2

 Communication with host .. 24 3.4.3
3.4.3.1 Interrupt support for Host .. 25

 I2C protocol states ... 27 3.4.4
3.4.4.1 Reset.. 28
3.4.4.2 READY ... 29
3.4.4.3 DATA Transfer ... 30
3.4.4.4 Read SCL .. 32
3.4.4.5 Reset Slave .. 33

 Concurrent execution ... 34 3.4.5

3.5 FIRMWARE SOURCE CODE .. 35
 Firmware Macros Description .. 35 3.5.1

 Firmware Sources Description .. 36 3.5.2

4 RTOS DRIVER SUPPORT .. 37

4.1 EXTERNAL APIS .. 37
4.2 INTERNAL FILES ... 38

5 TEST PLANS ... 40

5.1 EVM SUPPORT ... 40
 Icev2AM335x ... 40 5.1.1

 idkAM437x ... 40 5.1.2

Document Version 1.1

Page 5 of 50

I2C PRU Firmware

 idkAM572x ... 40 5.1.3

 idkAM574x ... 40 5.1.4

 idkAM571x ... 40 5.1.5

 iceK2G ... 40 5.1.6

5.2 EXTERNAL I2C BOARD ... 41
 I2C EEPROM Board ... 41 5.2.1

 I2C and SMBus IO Expander Evaluation Module ... 42 5.2.2

5.3 TEST SETUP .. 42
 Icev2AM335x ... 42 5.3.1

 idkAM437x ... 42 5.3.2

 idkAM572x ... 43 5.3.3

 idkAM574x ... 43 5.3.4

5.4 UNIT TEST .. 44

6 FIRMWARE FEATURE ENHANCEMENT .. 44

6.1 MODIFICATIONS TO I2C FIRMWARE FOR AM437X ICSS0 ... 44
6.2 FEATURES AND LIMITATIONS OF AM437X ICSS0 I2C FIRMWARE .. 45
6.3 I2C FIRMWARE RESOURCE REQUIREMENTS ... 45

 Memory Requirements ... 45 6.3.1

 PRU Cycle Count Requirements .. 45 6.3.2
6.3.2.1 I2C_FW, AM437X ICSS1 .. 46
6.3.2.2 I2C_FW_AM437X_ICSS0, AM437X ICSS0 ... 47

6.4 TEST PLAN ... 48
 EVM Support ... 48 6.4.1

6.4.1.1 idkAM437x ... 48
 Test Setup ... 49 6.4.2

6.4.2.1 idkAM437x ... 49
 Unit Test .. 50 6.4.3

Document Version 1.1

Page 6 of 50

I2C PRU Firmware

LIST OF FIGURES

Figure 1. I2C FW Design Layers .. 10
Figure 2. pinmux switching timing diagram ... 16
Figure 3. Electric connection for SDA line .. 17
Figure 4. Init Task ... 20
Figure 5. scheduler state function ... 22

Figure 6. HOST sends command to PRU ... 24
Figure 7. PRU reads command from HOST ... 24
Figure 8. PRU responds back to HOST .. 25
Figure 9. Host reads response from PRU.. 25

Figure 10. Global State Diagram .. 27
Figure 11. RESET State .. 28

Figure 12. Ready state transtion.. 29
Figure 13. General Data Transfer Flow .. 31
Figure 14. Read SCL Line .. 32

Figure 15. RESET slave .. 33
Figure 16. Scheduling graph for firmware .. 34

Figure 17. I2C EEPROM Test Board ... 41
Figure 18. SMbus Expander module .. 42

file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717466
file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717467
file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717468
file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717469
file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717470
file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717471
file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717472
file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717473
file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717474
file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717475
file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717476
file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717477
file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717478
file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717479
file://///lta0322553c/c/UserData/pru/i2c/fw_design_guide/I2C_FW_DESIGN_GUIDE.docx%23_Toc522717480

Document Version 1.1

Page 7 of 50

I2C PRU Firmware

LIST OF TABLES

Table 1. Feature Comparison Hard Vs Soft IP ... 9
Table 2. I2C firmware Register Memory Map ... 11
Table 3. Register Description for I2C firmware ... 12
Table 4. FW Command Values ... 13
Table 5. FW Command Response .. 13

Table 6. Buffer Size encoding .. 14
Table 7. Configuration Memory Map ... 18
Table 8. CPU Register Usage ... 19
Table 9. Scratchpad Memory Usage ... 19

Table 10. Macros List ... 36
Table 11. Firmware Source List .. 36

Table 12. List of Application APIs ... 37
Table 13. Function Description of APIs ... 37
Table 14. Firmware Internal APIs .. 39

Table 15. iceAM335x I2C Instances .. 40
Table 16. idkAM437x I2C Instances .. 40

Table 17. idkAM572x I2C Instances .. 40
Table 18. idkAM574x I2C Instances .. 40
Table 19. Test board pin details .. 41

Table 20. icev2AM335x Test Setup ... 42
Table 21. idkAM437x Test Setup ... 43

Table 22. idkAM572x Test Setup ... 43
Table 23. idkAM574x Test Setup ... 43

Table 24. I2C Firmware Memory Requirements .. 45
Table 25. I2C_FW Standard Mode Max. Cycle Counts (Cmax) on AM437x ICSS1 46

Table 26. I2C_FW Full Mode Max. Cycle Counts (Cmax) on AM437x ICSS1 47
Table 27. I2C_FW HS Mode Max. Cycle Counts (Cmax) on AM437x ICSS1. 47
Table 28. I2C_FW_AM437X_ICSS0 Standard Mode Max. Cycle Counts (Cmax) on AM437x

ICSS1 .. 47

Table 29. I2C_FW_AM437X_ICSS0 Full Mode Max. Cycle Counts (Cmax) on AM437x ICSS1

... 48
Table 30. I2C_FW_AM437X_ICSS0 HS Mode Max. Cycle Counts (Cmax) on AM437x ICSS1

.. Error! Bookmark not defined.
Table 31. idkAM437x I2C Instances .. 49

Table 32. idkAM437x Test Setup ... 50

Document Version 1.1

Page 8 of 50

I2C PRU Firmware

1 Introduction

The I2C (Inter-IC) bus is a bi-directional two-wire serial bus that provides a communication link

between integrated circuits (ICs). Most of TI’s SoCs have their own dedicated hardware I2C IP.

In case of need of more I2C instance then supported via hardware, firmware based I2C soft IP

can be used.

Firmware is designed to run on PRU cores. PRU cores have their own GPI/GPO pins which can

be toggled at specific time interval in order to implement I2C protocol. PRU programming is

done using assembly instructions. PRU cores also have their EIP timer to meet the timing

requirements. Host cores in SOC will configure PRUs for receiving and sending data on the I2C

bus. Every ICSS has 2 PRU. Both PRUs will be able to run the I2C firmware independently.

Also within a PRU, all instances will work independently then each other.

This Firmware design is not compatible with any of Ethernet based ICSS firmware design. It

means one cannot load I2C firmware in one PRU for example PRU0 and Dual_emac Firmware

in other PRU for example PRU1.

Document Version 1.1

Page 9 of 50

I2C PRU Firmware

2 Feature Set

The following are the list of features which will be supported for I2C firmware. It also compares

the features available on firmware with that available on hardware IP. Firmware features

mentioned below are supported on both PRU0 and PRU1. For example, both PRU0 and PRU1

supported 2 instances of I2C which makes 4 instances in total.

I2C Supported Features Hardware IP
Firmware

(PRU0 & PRU1)

No. of hardware instance SoC dependent
4 (Standard mode)

1 (Fast mode)
1 (HS mode at 1 MHz)

SMBus support NO YES

Addressing modes 7/10-bit 7/10-bit

Master mode YES YES

Slave mode YES NO

Combined Master-Slave mode/transaction YES NO

I2C data transfer rate
(Standard / Fast / HS mode: up to 100 kbps / 400 kbps / 3.4 Mbps)

100 kbps / 400 kbps /
3.4 Mbps

100 kHz / 400 KHz / 1
MHz I2C clock

frequency*

Bit format transfer 8 bit 8 bit

DMA support (one read DMA event and one write DMA event that the
DMA can use)

YES NO

Interrupts that the CPU can use YES 1

Peripheral enable/disable capability YES YES

Start/Restart/Stop YES YES

Built-in configurable FIFOs (8, 16, 32, 64 bytes) for buffered read/ write 8/16/32/64 8/16/32/64/128/256

Programmable clock generation programmable NO

8-bit-wide data access YES YES

Slave reset feature NO YES

Internal loopback feature NO YES

Implement Auto Idle mechanism (SoC Specific feature) YES NO

Implement Idle Request/Idle Acknowledge handshake mechanism (SOC
Specific feature)

YES NO

Support for asynchronous wakeup mechanism YES NO

Table 1. Feature Comparison Hard Vs Soft IP

*Note: Maximum supported I2C clock frequency, maximum bit rate will be reduced by I2C protocol overhead.

Document Version 1.1

Page 10 of 50

I2C PRU Firmware

3 Design Description

Figure 1. I2C FW Design Layers

Document Version 1.1

Page 11 of 50

I2C PRU Firmware

3.1 Design Layout

 Register Memory Map 3.1.1

The location of register memory map of each instance of I2C firmware will be in it respective

PRU’s Data memory. PRU0 will have it in DATA RAM0 and PRU1 will have it DATA RAM1.

SOC Device Module Instance Module Base Address Size (Bytes)

AM57xx &

K2Gx*

ICSS0 PRU0

Configuration Memory PRU0_DATA_RAM + 0x00000400 256

I2C0 PRU0_DATA_RAM + 0x00000500 768

I2C1 PRU0_DATA_RAM + 0x00000800 768

I2C2 PRU0_DATA_RAM + 0x00000B00 768

I2C3 PRU0_DATA_RAM + 0x00000E00 768

ICSS0 PRU1

Configuration Memory PRU1_DATA_RAM + 0x00000400 256

I2C0 PRU1_DATA_RAM + 0x00000500 768

I2C1 PRU1_DATA_RAM + 0x00000800 768

I2C2 PRU1_DATA_RAM + 0x00000B00 768

I2C3 PRU1_DATA_RAM + 0x00000E00 768

AM437x,

AM335x,

AM57xx &

K2Gx

ICSS1 PRU0

Configuration Memory PRU0_DATA_RAM + 0x00000400 256

I2C0 PRU0_DATA_RAM + 0x00000500 768

I2C1 PRU0_DATA_RAM + 0x00000800 768

I2C2 PRU0_DATA_RAM + 0x00000B00 768

I2C3 PRU0_DATA_RAM + 0x00000E00 768

ICSS1 PRU1

Configuration Memory PRU1_DATA_RAM + 0x00000400 256

I2C0 PRU1_DATA_RAM + 0x00000500 768

I2C1 PRU1_DATA_RAM + 0x00000800 768

I2C2 PRU1_DATA_RAM + 0x00000B00 768

I2C3 PRU1_DATA_RAM + 0x00000E00 768

Table 2. I2C firmware Register Memory Map

*Note: I2C firmware is not supported on ICSS0 for AM3.

Document Version 1.1

Page 12 of 50

I2C PRU Firmware

 Register Description 3.1.2

The following are the detailed description of the register values.

Register name Offset TYPE Bits Description

I2C_COMMAND 0x08 RW
31:16 Command Word

15:0 Command Response

I2C_BUF 0x94 RW
15:8 Size of memory buffer in RX mode

7:0 Size of memory buffer in TX mode

I2C_CNT 0x98 RW 15:0 Data Count

I2C_CON 0xA4 RW

15 I2C module enable

13:12 Operation mode selection

10 Master/slave mode

8 Expand Slave address

5 SMBUS Burst mode

4 End SMBUS with ACK

1 Stop condition (master mode only)

0 Start condition (master mode only)

I2C_SA 0xAC RW 9:0 Slave address

I2C_PRU_PIN 0xD8 RW

23:16 PRU GPO pin number for EDIO SDA

15:8 PRU GPI pin number for SDA

7:0 PRU GPO pin number for SCL

I2C_PRU_CMD_CODE 0xE0 RW 7:0 Command Code SMBUS mode

I2C_PRU_INST_ID 0xE4 RW 8:0 ICSS I2C instance id.

I2C_PRU_TX_DATA 0x100 W
256

Bytes
TX Data

I2C_PRU_RX_DATA 0x200 R
256

Bytes
RX Data

Table 3. Register Description for I2C firmware

3.1.2.1 I2C_COMMAND

Command Word: The value tells I2C firmware the next action to take. The following

tables indicate the list of command used by I2C firmware.

Command Value Description
Reset cmd

0x10

This command sends the firmware into reset state. It drops all earlier

configurations. Once firmware is in reset, setup_cmd needs to be passed

again for configuring the firmware.

Setup cmd

0x11

This command configures the firmware based on the value it reads from

the registers. Once this command is passed, firmware will start reading

through all the mmap registers. All the mmap registers should updated first

and then this command should be passed.

Rx cmd

0x12

This command starts to receive data on the line. It reads the data count and

slave address values.

Tx cmd

0x13

This command starts to send data on the line. It reads the data count and

slave address values.

Quick cmd 0x14 This is an SMBUS quick command.

Send byte cmd 0x15 This is an SMBUS command for sending a byte.

Document Version 1.1

Page 13 of 50

I2C PRU Firmware

Recieve byte cmd 0x16 This is an SMBUS command for recieving a byte.

Write byte cmd 0x17 This is an SMBUS command for writing a byte.

Read byte cmd 0x18 This is an SMBUS command for reading a byte.

Write word cmd 0x19 This is an SMBUS command for writing a word (2 bytes).

Read word cmd 0x1A This is an SMBUS command for reading a word (2 bytes).

Block write cmd 0x1B This is an SMBUS command for writing a N bytes of data.

Block read cmd 0x1C This is an SMBUS command for reading a N bytes of data.

Read scl 0x1D This command is used for reading the SCL line value.

Reset slave

0x1E

This command will reset the slave device if it is hunged. It will follow

standard I2C protocol for resetting the slave, if slave have kept the SDA

line low.

Table 4. FW Command Values

Command Response: The value tells the response of I2C firmware for the last command

passed. The following tables indicate the list of responses used by I2C firmware.

Response Value Description

Command success 0x0500

This response indicates that PRU was able to

perform the command succesfully.

Reset command failed 0x0501

This response indicates that PRU was not able to

bring out I2C firmware out of reset successfully.

Setup command failed 0x0502

This response indicates that setup_cmd was not

successful.

Tx command failed 0x0503

This response indicates that Tx was not

successful.

Rx command failed 0x0504

This response indicates that Rx was not

successful.

Scl value high 0x0505

This response indicates that SCL line is high for

10 clock cycle when read for error condition.

Scl value low 0x0506

This response indicates that SCL line is low for

10 clock cycle when read for error condition.

Reset slave done 0x0507

This response indicates that Slave reset was done

with 9 dummy clock pulse.

Address acknowldege failed 0x0508

This response indicates that No ACK was

received after slave address was transmitted.

Data acknowldege failed 0x0509

This response indicates that No ACK was

received after data was transmitted.

Master slave mode failed 0x050A

This response indicates that I2C mode is either

incorrect or not supported.

Addressing mode failed 0x050B

This response indicates that I2C addressing

mode is either incorrect or not supported.

Invalid command 0x050C

This response indicates a unknown command as

been passed.

Invalid data count 0x050D

This response indicates the number of bytes to

be sent/receive is more than buffer size.

Time out error 0x050E This response indicates time out has happened.

Table 5. FW Command Response

3.1.2.2 I2C_BUF

This indicates the size of the memory buffer for RX and TX mode. Both TX and RX bit

field 7 bits wide. It supports value of 8, 16, 32, 64, 128 or 256 bytes memory region. The

following table shows the encoding of each buffer size.

Document Version 1.1

Page 14 of 50

I2C PRU Firmware

Buffer Size Encoding Value
8 Bytes 1

16 Bytes 2

32 Bytes 4

64 Bytes 8

128 Bytes 16

256 Bytes 32

Table 6. Buffer Size encoding

3.1.2.3 I2C_CNT

This indicates the amount of data in bytes to be sent/read.

3.1.2.4 I2C_CON

I2C module enable: indicates if the particular instance is enabled or not.

 1-> module is enabled.

 0-> module is disabled.

Master/slave mode: indicates which mode is i2c currently set to.

 1-> Master mode.

 0-> Slave mode (Not supported).

Expand Slave address: indicates slave addressing mode

 1-> 10-bits address mode.

 0-> 7-bits address mode.

SMBUS Burst mode: SMBUS burst mode is enabled or not.

 1-> burst mode is enabled.

 0-> burst mode is disabled.

End SMBUS with ACK: SMBUS end read command with ACK or NACK

 1-> send NACK to end.

 0-> send ACK to end.

Stop condition (master mode only): send stop condition at the end of transaction.

 1-> send stop condition.

 0-> no stop condition.

Start condition (master mode only): send start condition at the beginning of transaction.

 1-> send start condition.

 0-> no start condition.

3.1.2.5 I2C_SA

Slave address: indicates the slave address. If 10 bits mode then, all 9:0 bits used. If 7 bits

mode, all 6:0 bits are used.

3.1.2.6 I2C_PRU_PIN

PRU GPO EDIO SDA: indicates the pin number from EDIO to be used as output.

PRU GPI SDA: indicates the pin number for PRU GPI to be used as input.

PRU GPO SCL: indicates the pin number from PRU GPO to be used as CLK.

Document Version 1.1

Page 15 of 50

I2C PRU Firmware

3.1.2.7 I2C_PRU_CMD_CODE

Command Code: Smbus protocol supports sending a command code in its read/write

commands. This 8 bit value indicates the value of command code.

3.1.2.8 I2C_PRU_INST_ID

I2C FW Instance ID: PRU is capable of running upto 4 instance of i2c. This field gives

the id to each instance. The id is utilized by driver for identification of interrupt when

more than one instance is active.

3.1.2.9 I2C_PRU_TX_DATA

TX Data: This memory buffer is used by I2C firmware for reading the transmitted data.

The memory region is 256 Bytes. The amount of data that can be read from the buffer

will depend on I2C_BUF register. If buffer is less than 128 bytes, firmware will keep any

memory region after buffer as reserved.

3.1.2.10 I2C_PRU_RX_DATA

RX Data: This memory buffer is used by I2C firmware for writing the received data. The

memory region is 256 Bytes. The amount of data that can be written in the buffer will

depend on I2C_BUF register. If buffer is less than 128 bytes, firmware will keep any

memory region after buffer area as reserved.

Document Version 1.1

Page 16 of 50

I2C PRU Firmware

3.2 Design Challenge

There is one challenge when designing the I2C firmware using PRU core. PRU hardware

does not support generic GPIO. It does not have an output enable register, which allows

deciding the mode of GPIO pins. They are separate hardware pins. In order to read the

value on the pin, GPI has to be used. In order to set a value on the pin, GPO has to be used.

To switch between GPI and GPO mode, the pin-mux register of the pin needs to be

modified.

There are 3 options in order to resolve this situation. We will be using option 3 for our

implementation.

 Pinmuxing using PRU. 3.2.1

We can use the PRU core to directly modify the value in pinmux control register. We can

then switch between GPO and GPI mode.

Due to hardware limitations, PRUs of AM3 and AM4 are not capable of editing the

Pinmux Control registers. At the same time, K2G and AM57xx has a required procedure

for editing pinmux registers in order to ensure the IO timings in the SOC data manual over

the lifetime of the device. According to this procedure, the PRU should not edit the

pinmux registers on the fly.

 Pinmuxing using EDMA. 3.2.2

We can use the EDMA engine to modify the value in pinmux control register. The

following timing diagram explains the situation.

6T 5T 4T 3T 2T T

SCL

∆t = T/2

SDA

Figure 2. pinmux switching timing diagram

Document Version 1.1

Page 17 of 50

I2C PRU Firmware

The following are the timing requirement need by the I2C protocol. Here, ∆t is the time

period in which the GPI/GPO switching needs to be done.

HS I2C i.e. I2C at 400 KHz, Time T = 1/400 KHz = 2.5 uSec

∆t = T/2 = 1.25 uSec

Standard I2C i.e. I2C at 100 KHz, Time T = 1/100 KHz = 10 uSec

∆t = T/2 = 5 uSec

EDMA time for writing one pinmux control register t ~= 3.3 uSec.

Therefore, we cannot proceed with this option if we want to support HS mode in I2C

firmware.

 Using IEP DIGIO pins. 3.2.3

ICSS subsystem comes with an Industrial Ethernet Peripheral. IEP comes with a digital I/O

port (DIGIO). One important feature for IEP DIGIO is that it can support tristate mode. It

means the GPO support 3 logic level value high, low and tristate. This makes it possible to

emulate Hardware GPIO IP feature using PRU GPI and GPO pins.

2 pins of PRU are used to emulate the SDA line for I2C. They are DIGIO GPO pin and

PRU GPI pin. The following connection diagram shows it is done.

In order to set a value high or low on the SDA line the DIGIO GPO pin is set to high or

low value. In order to read the pin value on SDA line, the DIGIO GPO pin is set to tristate

and then PRU GPI pins read the value on the SDA line.

There are some limitations to this method too.

1) There are only 8 DIGIO GPO pins pinned out of SOC (AM3,4,5 & K2G). This makes

the absolute maximum number of I2C instance supported per ICSS subsystem to 8

instances.

2) For AM3 and AM4, there is no IEP peripheral for ICSS0 subsystem. Only ICSS1

subsystem can ran I2C firmware.

3) There is latency in the read and write cycle time to DIGIO GPO. It takes 7 cycles for a

write to be propagated on DIGIO output pins. This makes read cycle time on the GPI

pins to 8 cycles (7 for writing DIGIO GPO to tristate and 1 for reading PRU GPI pins).

PRU GPI <M>

DIGIO GPO <N>

SDA <K>

Figure 3. Electric connection for SDA line

Document Version 1.1

Page 18 of 50

I2C PRU Firmware

3.3 PRU Resource Usage

 PRU Data RAM 3.3.1

The firmware design uses PRU DATA RAM i.e. DRAM for creating the Memory Map

register section. The whole DRAM is divided into following section.

3.3.1.1 Configuration Memory Region

This memory region is used for giving global configuration for Firmware. Currently, this

region has 3 registers. The following are descriptions of those registers.

Register name Offset TYPE Bits Description

IEP_INIT_COUNT 0x00 RW 64:0

This value indicates the first count value

for IEP compare event. This register is

used for event when IEP peripheral is

already running.

IRQ_STATUS_REG 0x08 RW 3:0

This is one common IRQ register for all

instances. This allows for a quick look up

during ISR routine.

BUS_FREQUENCY 0x0C RW 3:0

This decides the bus frequency I2C

Firmware. The Firmware decides the

routine based on this register.

Table 7. Configuration Memory Map

3.3.1.2 Instance Memory Region

The description of this memory regions is mentioned Section 3.1. These can maximum

support upto 4 Instance memory.

a. I2C0 Memory region

b. I2C1 Memory region

c. I2C2 Memory region

d. I2C3 Memory region

 Local Register 3.3.2

PRU core have 32 local CPU registers. These registers are 1, 2 and 4 bytes addressable.

The firmware design uses each register for storing different firmware related information.

The following table shows the list of register usage as well as the data stored.

Register Bits Description

R10 31:0
This register is used to keep a pointer to Instruction Memory region for

quick access.

R11 31:0
This register is used to keep a pointer to Tx Memory Buffer for quick

access.

R12 31:0
This register is used to keep a pointer to Rx Memory Buffer for quick

access.

R13

31:16 The upper 16 bits is used to store the slave address for current transaction.

15:0
The lower 16 bits is used to store the state pointer of the current instance.

Hence, this helps firmware to identify the action to perform and next state.

R14 31:24 Used for storing instance id of current instance.

Document Version 1.1

Page 19 of 50

I2C PRU Firmware

23:16 Used for storing pin number for EDIO to be used as output.

15:8 Used for storing pin number for PRU GPI to be used as input.

7:0 Used for storing pin number for PRU GPO to be used as CLK.

R15

31:24 Used for storing total data count for current transaction.

23:16 Used for storing current data sent/received for current transaction.

15:8 Used for storing data value sent/received for current transaction.

7:0 Used for storing number of Address/Data bits sent/received.

R16

31:24 Used for storing Rx buffer size.

23:16 Used for storing Tx buffer size.

15 Used for storing I2C module enable bit for current transaction.

10 Used for storing Master/slave mode bit for current transaction.

8 Used for storing Expand Slave address bit for current transaction.

5 Used for storing SMBUS Burst mode bit for current transaction.

4 Used for storing End SMBUS with ACK bit for current transaction.

1 Used for storing Stop condition bit for current transaction.

0 Used for storing Start condition bit for current transaction.

R17
31:16 Used for SMBUS DATA count.

15:0 Used for storing global state pointer for current instance.

R18 31:0 Used for storing IEP DIGIO output enable register’s local copy for PRU0.

R19 31:0 Used for storing IEP DIGIO output enable register’s local copy for PRU1.

Table 8. CPU Register Usage

 Scratchpad 3.3.3

There are 3 shareable scratchpad memory banks available in PRU ICSS. They are used

for storing active state of each instance at given time. The firmware pushes all the data

from PRU Core registers into these memories depending on PRU core and instance

number and vice versa. The following table indicates usage of memory banks.

PRU CORE Instance Bank Registers

PRU0

I2C0

BANK0

REG 0 to REG 9

I2C1 REG 10 to REG 19

I2C2 REG 20 to REG 29

I2C3 BANK1 REG 0 to REG 9

PRU1

I2C0

BANK2

REG 0 to REG 9

I2C1 REG 10 to REG 19

I2C2 REG 20 to REG 29

I2C3 BANK1 REG 20 to REG 29

Table 9. Scratchpad Memory Usage

Document Version 1.1

Page 20 of 50

I2C PRU Firmware

3.4 Design Theory

 Initialization Task 3.4.1

The firmware logic, when it comes out of reset does all the required initialization of

various peripheral and component needed for functioning. The resources it initializes are

IEP Timer and Compare events, IEP DIGIO logic level setup, enable support for using

scratchpad memory. The following state flow diagram shows the steps done by firmware

during initialization task.

Enable scratchpad memory transfer

Clear R10-R19 register for I2C3

Clear R10-R19 register for I2C1

Clear R10-R19 register for I2C2

Clear R10-R19 register for I2C0

Add delay

Setup DIGIO

Setup IEP Counter/Compare

100KHz Freq

400KHz Freq

1MHz Freq

Jump to scheduler0

Jump to scheduler1

Jump to scheduler2 Jump to error

YES

YES

YES

NO

NO

NO

Figure 4. Init Task

Document Version 1.1

Page 21 of 50

I2C PRU Firmware

The first things firmware does after coming out of reset is that it enable support of

transferring data between scratchpad memory bank and local CPU registers. It initializes

R10-R19 registers for instance 0 and set the state pointer to RESET state and then store

the value of register into memory banks. It does the same for remaining instances. Then it

enables IEP DIGIO register to low logic value and enable to pins to go to high impedance

state. Finally, it set the IEP compare event based on the bus frequency provided.

Document Version 1.1

Page 22 of 50

I2C PRU Firmware

 Scheduler Task 3.4.2

The firmware would be able to emulate multiple independent instances of I2C firmware

across different pins. Example: It can emulate I2C instance 0 on GPIO pin0 and pin1. It

can emulate I2C instance 1 on GPIO pin2 and pin3. Both instances will be working

independently from each other irrespective of each state. In order to do this, it requires a

scheduler task.

The purpose of the scheduler task is to switch between each instance at regular interval of

time. Every instance is provided a time slot and it should fulfill its activity during the

time slot. Whenever it receives the interrupt for IEP timer, it means the interval for a

particular instance is over, and it will move to next instance.

There are limitations on PRU resources based on HW. Hence, there are 3 version of

scheduler. One for 100KHz Bus speed, one for 400KHz and one for 1MHz.

The overall state diagram of the scheduler is as follows.

NO

YES

Received

interrupt

Next instance

Load instance data into registers

Jump to instance current state &

update next state

Store instance data into memory

Figure 5. scheduler state function

Document Version 1.1

Page 23 of 50

I2C PRU Firmware

The state diagram starts with reading the interrupt pin if the interrupt has been raised or

not. Once, it receives the interrupt then first it calculates the next instance. There are

multiple of factors affecting the outcome. Example, how many instances are enabled

currently. After that, the working meta data for that instance is loaded back into the

registers. Based on the meta data, the current state is found out and next state is

calculated. Once the operation is performed, the data is stored back into the memory.

Here memory can be data memory or scratch pad memory.

Note: meta data consist of state information, pointers to data memory, data value, address

value etc.

Document Version 1.1

Page 24 of 50

I2C PRU Firmware

 Communication with host 3.4.3

Contrary to usual hardware IP registers, firmware cannot understand if any register has

been updated or not. Therefore in order to update the configuration of firmware, we need

to use a communication protocol between Host and firmware running PRU core. The

following describes how that communication between host and firmware is done.

There is a register provided in the firmware register map of I2C firmware. It has been

named as I2C_COMMAND. This register is used to communicate between host and pru

core. There are 2 16 bits field in the register “Command Word” & “Command Response”.

Both core has to agree on the following policy.

1) Host will update Command Word if the current value of the field is 0x0000. Hence, it

will first read the value and if it is 0x0000 then only it will update the value.

2) Host will only write 0x0000 in Command Response. It can read the value any time but

only write 0x0000 to the field.

3) PRU will update Command Response if the current value of the field is 0x0000.

Hence, it will first read the value and if it is 0x0000 then only it will update the value.

4) PRU will only write 0x0000 in Command Word. It can read the value any time but

only write 0x0000 to the field.

The typical scenario of how the communication that will happen between Host and PRU

is shown below.

1) Host and PRU are active. Host will update the command word to command code i.e.

0x#### and command response to 0x0000. After that I will go to sleep.

2) PRU will constantly read the command word and command response value. Once

response value becomes 0x0000, it will read and perform the action indicated by the

command word.

HOST

PRU

I2C0

I2C1

I2C2

(0x####) | (0x0000)

(0x####) | (0x0000)

HOST

(Sleep)

PRU

I2C0

I2C1

I2C2

(0x####) | (0x0000)

(0x####) | (0x0000)

Figure 6. HOST sends command to PRU

Figure 7. PRU reads command from HOST

Document Version 1.1

Page 25 of 50

I2C PRU Firmware

3) PRU will finish the action with success or failure. It will update the response register

accordingly. It will update command word to zero indicating that command is

finished. Finally, it will raise an interrupt via INTC register.

4) Host will receive the interrupt. In the ISR routine, Host will read the command word

and response for all instances. Host will find which instances responded. It will check

if the command word is 0x0000 and response is anything except 0x0000. It will take

appropriate action based on response value.

Both Host and PRU will follow the policy. This will make sure that no command is lost

due to any timing mismatch. Once a command is passed, host cannot do anything until

PRU responds to the command. Similarly, PRU cannot do anything until the host has

accepted the response.

3.4.3.1 Interrupt support for Host

PRU hardware supports limited number of interrupt available for host. Firmware uses one

interrupt line between host and PRU core for providing interrupt calls. This interrupt line

is shared between all instances. The usual way for PRU to raise interrupt is in response to

any command sent.

In order to provide quick ISR response, the IRQ_STATUS_REG is used. Each will update

the bit field in this register based on the id provided to that instance. Using the register

and id host will realize which interrupt has been raised. For example, instance 0 will

make bit 0 high and it will cleared by the host when interrupt is served. Similarly,

instance 1 will make bit 1 high and it will cleared by the host when interrupt is served.

The order of serving of interrupt will not matter, as if the interrupt is not served by the

host in a fixed interval, the firmware will try to fire the interrupt until it has been served.

HOST

(Sleep)

PRU

I2C0

I2C1

I2C2

(0x0000) | (0x####)

(0x####) | (0x0000) INTC

HOST

PRU

I2C0

I2C1

I2C2

(0x0000) | (0x####)

(0x####) | (0x0000)

Figure 8. PRU responds back to HOST

Figure 9. Host reads response from PRU

Host
(Sleeps)

Document Version 1.1

Page 26 of 50

I2C PRU Firmware

The following are the sequence of steps done by firmware for raising interrupt for each

instance.

1) The firmware will update I2C1 command response.

2) The firmware will set the bit field high in IRQ_STATUS_REG register.

3) Assert the PRU INTC IRQ line.

4) Wait/check for bit field to be cleared to zero.

5) Keep on asserting the IRQ line every alternate I2C clk cycle until the bit field is

cleared to zero.

6) Once cleared move to next state.

The following are the sequence of steps expected from Host for serving the interrupt.

1) Disable the IRQ.

2) Read the bit field in IRQ_STATUS_REG register and find out how many and which

PRUs has raised the interrupt.

3) Clear the bit field to zeros.

4) De-assert the PRU INTC IRQ line.

5) Exit IRQ handler and re-enable the IRQ.

Document Version 1.1

Page 27 of 50

I2C PRU Firmware

 I2C protocol states 3.4.4

The primary working state of i2c firmware is as follows. This is the generalized state of

each i2c protocol. Each instance has a copy of its own state.

There are 15 primary states. Reset state is the default state when the system comes up. It

does not have any configuration at this time. Once, setup command is received, it does all

the parameter configuration and moves to ready state. In order to change parameter, pass

the setup command again with different parameter values. The state changes to Rx state

on receiving a receive command. It changes to Tx state on receiving a transmit command.

Similarly, it changes to Quick state on receiving an SMBUS quick command. If a failure

happens it moves back ready state. For example, any failure with block read/write or byte

read/write state etc. it will move the state back to ready state. Each of this states are

divided into multiple stages.

setup cmd
(reset cmd |

setup failed)

Reset State

Ready State
Send Byte

Quick

Receive Byte

Read Bytes

Write Byte

Write Word

Read Word

Tx State

Rx State

Read SCL

Reset Slave

Block Read

Block Write

Figure 10. Global State Diagram

Document Version 1.1

Page 28 of 50

I2C PRU Firmware

3.4.4.1 Reset

In this state, firmware looks for 2 things. If the module is enabled and setup command

received then it moves to ready state.

Module

Enabled

Reset State

Setup

Command

SETUP PRU PIN NUM

SETUP INST ID

SETUP SCL SDA HIGH

SETUP TX FIFO SIZE

SETUP RX FIFO SIZE

SETUP MASTER/SLAVE MODE

SETUP ADDRESSING MODE

SETUP START CTRL

SETUP STOP CTRL

Error Interrupt

Ready Interrupt

Ready State

YES

NO

NO

YES

Figure 11. RESET State

Document Version 1.1

Page 29 of 50

I2C PRU Firmware

3.4.4.2 READY

The firmware in this state goes wait for command to be passed. Once, receiving a

command it goes to next state or gives an error interrupt for unknown command.

Send Byte

Quick

Receive Byte

Read Bytes

Write Byte

Write Word

Read Word

Tx cmd

Rx cmd

Read SCL

Reset Slave

Block Write

NO

NO

NO

NO

NO

Ready State

Send Byte

Quick

Receive Byte

Read Bytes

Write Byte

Write Word

Read Word

Tx State

Rx State

Read SCL

Reset Slave

Block Read

Block Write

Block Read Unknown Cmd

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

NO

NO

Figure 12. Ready state transtion

Document Version 1.1

Page 30 of 50

I2C PRU Firmware

3.4.4.3 DATA Transfer

The following are the command which makes the firmware goes into data transfer state.

The following are the list of state in the broad state.

1) Rx: For Standard I2C receive data

2) Tx: For Standard I2C send data

3) Quick: For SMBUS quick command

4) Send byte: For SMBUS sending 1 byte

5) Recieve byte: For SMBUS receiving 1 byte

6) Write byte: For SMBUS writing 1 byte

7) Read byte: For SMBUS reading 1 byte

8) Write word: For SMBUS writing 2 byte

9) Read word: For SMBUS read 2 byte

10) Block write: For SMBUS writing N bytes

11) Block read: For SMBUS read N bytes

The general flow in these states is as follows.

TX MODE/RX MODE

Set SCL SDA to logic high

Slave address setup

Slave address R/W setup

Setup DATA Count Value

Make SDA Low for start condition

Make SCL Low for start condition

Change SDA based MSB of address

Make SCL to logic high

Read SDA line

Make SCL to logic low

Release SDA line high

Make SCL to logic high

Read SDA line

Make SCL to logic low

Document Version 1.1

Page 31 of 50

I2C PRU Firmware

ACK received

Change SDA based MSB of data

Make SCL to logic high

Read SDA line and store it

Make SCL to logic low

Release SDA line high/low

Make SCL to logic high

Read SDA line

Make SCL to logic low

ACK received

Send Success Response

Send IRQ

Send Error Response

DATA left

YES

YES

YES

NO

NO

NO

Figure 13. General Data Transfer Flow

Document Version 1.1

Page 32 of 50

I2C PRU Firmware

3.4.4.4 Read SCL

The purpose of this command is to read the SCL line in case theslave is hung or

something bad has happened. In this state, the firmware read the SCL line for 10 i2c

clock cycles. It responds with high or low value. If firmware reads SCL line is pulled

down for all 10 clock cycles. Then it responds with low value else with high value. The

following diagram shows the state flow.

Note: In order to read the SCL line its pinmux register has to be modified from

GPO to GPI. PRU is not capable for changing the SCL pinmux. The host has to do

this task for firmware before passing this command.

Make setup for reading SCL

Read SCL Line

Count < 10

SCL LOW count = 10

SCL line is low

SCL line is high

NO

NO

YES

YES

Figure 14. Read SCL Line

Document Version 1.1

Page 33 of 50

I2C PRU Firmware

3.4.4.5 Reset Slave

This command is used of resetting the slave using standard 9 clock cycles. If the slave is

hung this is the only way to bring it out of reset.

Make setup for resetting slave

Make SCL high

count < 9

SCL line is low

NO

YES

Wait for 1 cycle

Make SCL low

Wait for 1 cycle

Figure 15. RESET slave

Document Version 1.1

Page 34 of 50

I2C PRU Firmware

 Concurrent execution 3.4.5

In order to truly emulate independent multiple instance of i2c protocol, we break the processing

time of each instance into small time interval. The following time graph will show how it is

done.

SDAN
SCLN

SDA1
SCL1

SDA2
SCL2

t1 t0 t2 t3

Perform state function &
calculate next sate

Figure 16. Scheduling graph for firmware

Document Version 1.1

Page 35 of 50

I2C PRU Firmware

3.5 Firmware Source code

 Firmware Macros Description 3.5.1

The following are the list of macros used in the firmware source code.

Macros File Function

UPDATE_NEXT_LOCAL_STATE I2C_macros.h update next state in state keep register.

UPDATE_NEXT_GLOBAL_STATE I2C_macros.h update next state in state keep register.

COPY_LOCAL_TO_GLOBAL_STATE I2C_macros.h update next state in state keep register.

STATE_TASK_OVER I2C_macros.h

Return to the scheduler as state task is

over.

CHECK_INTERRUPT_RECEIVED I2C_macros.h

Check if the interrupt is recieved by the

host & then move to next task.

RAISE_INTERRUPT_MEM_FOR_HOST I2C_macros.h

raise the interrupt memory for telling

host which instance raise the interrupt.

RAISE_INTERRUPT_FOR_HOST I2C_macros.h raise the interrupt line for Host.

SET_EDIO_DATAOUT_VALUE I2C_macros.h Set value on all iep digio pins

SET_SDA_PIN_LOW I2C_macros.h Set low value on SDA pin

SET_SDA_PIN_HIGH I2C_macros.h Set high value on SDA pin

SET_SCL_PIN_LOW I2C_macros.h Set low value on SCL pin

SET_SCL_PIN_HIGH I2C_macros.h Set high value on SCL pin

READ_SDA_PIN_ACK I2C_macros.h Set high value on SCL pin

SET_OUTPUT_PIN_VALUE_HIGH I2C_macros.h Set high value on SCL and SDA pin

READ_ADDRESS_REGISTER I2C_macros.h

Read the address register for slave

address

READ_RW_REGISTER_BIT I2C_macros.h

Read the RW bit to find read or write

operation

SET_SDA_LOW_FOR_START I2C_macros.h set sda low for start condition

SET_SCL_LOW_FOR_START I2C_macros.h set scl low for start condition

MODIFY_SDA_PIN I2C_macros.h

Change sda pin based on the data

register

READ_SDA_PIN I2C_macros.h read sda pin based on the line value

SCL_LOW_NEXT_STATE I2C_macros.h Change scl to low and decide next state

MOV32 I2C_scheduler.h Move a 32bit value to a register

DELAY I2C_scheduler.h ADD a delay of N cycles.

ENABLE_XIN_XOUT_SHITFTING I2C_scheduler.h ADD a delay of N cycles.

I2C_SETUP_IEP_COUNTER I2C_scheduler.h

Setup the IEP timer counter for

periodic interrupt.

I2C_SETUP_IEP_DIGIO I2C_scheduler.h

Setup the IEP timer counter for

periodic interrupt.

I2C_INSTANCE0_INIT I2C_scheduler.h Initialize all the register for I2C0

I2C_INSTANCE1_INIT I2C_scheduler.h Initialize all the register for I2C1

I2C_INSTANCE2_INIT I2C_scheduler.h Initialize all the register for I2C2

I2C_INSTANCE3_INIT I2C_scheduler.h Initialize all the register for I2C3

I2C_IEP_INTC_CLEAR_EVENT I2C_scheduler.h

Clear the iep cmp event and intc event

for Standard/Full mode

Document Version 1.1

Page 36 of 50

I2C PRU Firmware

I2C_IEP_INTC_CLEAR_EVENT1 I2C_scheduler.h

Clear the iep cmp event and intc event

for HS mode

I2C_WAIT_FOR_IEP_CMP I2C_scheduler.h

wait until the IEP CMP Event triggers

and interrupt

I2C_WAVE_FUNCTION0 I2C_scheduler.h jump to the next state of i2c0 function

I2C_WAVE_FUNCTION1 I2C_scheduler.h jump to the next state of i2c1 function

I2C_WAVE_FUNCTION2 I2C_scheduler.h jump to the next state of i2c2 function

I2C_WAVE_FUNCTION3 I2C_scheduler.h jump to the next state of i2c3 function

Table 10. Macros List

 Firmware Sources Description 3.5.2

The following are the list of firmware source code files.

File Description

firmware_version.h Contains the version information of the firmware.

I2C_function.h Contains the function routine of Rx and Tx part of I2C protocol

I2C_macros.h Contains all the macros needed for Rx/Tx for I2C protocol

I2C_protocol.asm Contains the routine for global state function

I2C_scheduler.asm Contains the scheduler routine for multiple instances

I2C_scheduler.h Contains all the macros needed scheduler routine

I2C_smbus.asm Contains the routine needed for SMBUS operation

icss_cfg_regs.h Contains ICSS Configuration Register definition

icss_defines.h Contains ICSS Global Defines

icss_i2c.h Contains I2C firmware related Offset and Register definition

icss_iep_regs.h Contains ICSS Industrial Ethernet Peripheral Registers Definition

icss_intc_regs.h Contains ICSS Interrupt Controller Module Registers Definition

icss_miirt_regs.h Contains ICSS MII_RT Module Registers Definition

pru.cmd Linker cmd file of firmware builds

Table 11. Firmware Source List

Document Version 1.1

Page 37 of 50

I2C PRU Firmware

4 RTOS Driver Support

4.1 External APIs

Currently Hard IP driver supports a list of APIs for configuring I2C IP. This APIs are called

by application to configure and used I2C IP. The same API’s will be supported for I2C

firmware also. Application will call the APIs in the same manner for using I2C firmware.

The following are the list of API’s.

Return

Type API name Arguments Functional Description

void I2C_close handle A I2C_Handle returned from I2C_open

int32_t I2C_control

handle A I2C handle returned from I2C_open()

uint32_t

A command value defined by the driver specific

implementation

void*

An optional R/W (read/write) argument that is

accompanied with cmd

void I2C_init void

The I2C_config structure must exist and be

persistent before this function can be called

I2C_Handle I2C_open

uint32_t

Logical peripheral number for the I2C indexed

into the I2C_config table

I2C_Params*

Pointer to an parameter block, if NULL it will

use default values. All the fields in this structure

are RO (read-only).

void I2C_Params_init I2C_Params*

An pointer to I2C_Params structure for

initialization

int16_t I2C_transfer

I2C_Handle A I2C_Handle returned from I2C_open

 I2C_Transaction*

A pointer to a I2C_Transaction. All of the fields

within transaction are WO (write-only) unless

otherwise noted in the driver implementations

void
I2C_transactionIni

t I2C_Transaction* transaction parameter structure to initialize

Table 12. List of Application APIs

API name Functional Description

I2C_close Function to close a I2C peripheral specified by the I2C handle

I2C_control Function performs implementation specific features on a given I2C_Handle

I2C_init Function to initializes the I2C module

I2C_open

Function to initialize a given I2C peripheral specified by the particular index value.

The parameter specifies which mode the I2C will operate.

I2C_Params_init Function to initialize the I2C_Params struct to its defaults

I2C_transfer Function that handles the I2C transfer

I2C_transactionInit Function to initialize the I2C_Transaction struct to its defaults

Table 13. Function Description of APIs

Document Version 1.1

Page 38 of 50

I2C PRU Firmware

4.2 Internal Files

New version of source file will be implemented in I2C_v2.c. This version of the file will

implement the APIs in case of firmware Soft IP. There are lot of internal function which is

driver implementation dependent.

External API name Mapped internal implementation

I2C_close I2C_close_v2

I2C_control I2C_control_v2

I2C_init I2C_init_v2

I2C_open I2C_open_v2

I2C_Params_init I2C_Params_init_v2

I2C_transfer I2C_transfer_v2

I2C_transactionInit I2C_transactionInit_v2

- I2C_v2_pruIcssInit

- I2C_v2_setupPinMux

- I2C_v2_writePinNum

- I2C_v2_setupFifoSize

- I2C_v2_pollIrqSts

- I2C_v2_setBusFrequency

- I2C_v2_enableModule

- I2C_v2_disableModule

- I2C_v2_enableMasterMode

- I2C_v2_enableSlaveMode

- I2C_v2_7bitAddressMode

- I2C_v2_10bitAddressMode

- I2C_v2_enableStartBit

- I2C_v2_disableStartBit

- I2C_v2_enableStopBit

- I2C_v2_disableStopBit

- I2C_v2_sendCmd2PRU

- I2C_v2_readResp2PRU

- I2C_v2_clearResp2PRU

- I2C_v2_setSlaveAddress

- I2C_v2_putSmbusCmdCode

- I2C_v2_setDataCount

- I2C_v2_getDataCount

- I2C_v2_putData

- I2C_v2_getData

- I2C_v2_waitForCompletion

- I2C_v2_sendNack

- I2C_v2_sendAck

- I2C_v2_enableBurstMode

- I2C_v2_disableBurstMode

Document Version 1.1

Page 39 of 50

I2C PRU Firmware

- I2C_v2_writeInstId

Table 14. Firmware Internal APIs

Document Version 1.1

Page 40 of 50

I2C PRU Firmware

5 Test Plans

5.1 EVM Support

 Icev2AM335x 5.1.1
ICSS PRU Instance Functional Pin PRU GPIO Pins EVM Port EVM pin
ICSS1 PRU0 I2C0 SCL pr1_pru0_pru_r30_1 J3 14

SDA pr1_edio_data_out7 J4 21

pr1_pru0_pru_r31_0 J3 12

Table 15. iceAM335x I2C Instances

 idkAM437x 5.1.2
ICSS PRU Instance Functional Pin PRU GPIO Pins EVM Port EVM pin
ICSS1 PRU0 I2C0 SCL pr1_pru0_pru_r30_8 J3 6

SDA pr1_edio_data_out0 J3 5

pr1_pru0_pru_r31_9 J3 8

I2C1 SCL pr1_pru0_pru_r30_10 J16 46

SDA pr1_edio_data_out1 J3 7

pr1_pru0_pru_r31_11 J16 48

Table 16. idkAM437x I2C Instances

 idkAM572x 5.1.3
ICSS PRU Instance Functional Pin PRU GPIO Pins EVM Port EVM pin
ICSS1 PRU1 I2C0 SCL pr1_pru1_gpo1 J21 5

SDA pr1_edio_data_out1 J46 4

pr1_pru1_gpi0 J21 3

Table 17. idkAM572x I2C Instances

 idkAM574x 5.1.4
ICSS PRU Instance Functional Pin PRU GPIO Pins EVM Port EVM pin
ICSS1 PRU1 I2C0 SCL pr1_pru1_gpo1 J21 5

SDA pr1_edio_data_out1 J46 4

pr1_pru1_gpi0 J21 3

Table 18. idkAM574x I2C Instances

 idkAM571x 5.1.5

 No PRU pin available for idkAM571x.

o All PRU GPI/O pins are being routed to external ICs.

 iceK2G 5.1.6

 No PRU pin available for iceK2G

o All PRU GPI/O pins are being routed to extension connector J4.

o No daughter card available to connect with the port.

Document Version 1.1

Page 41 of 50

I2C PRU Firmware

5.2 External I2C board

 I2C EEPROM Board 5.2.1

The following are the pictures of the I2C EEPROM board. This board is designed

manually for the purpose of testing firmware. It is custom made board. The board

comprises of 2 I2C EEPROM chips.

Figure 17. I2C EEPROM Test Board

The following table indicates the list of IO pins available on the board with descriptions.

Pins Description
VCC Vcc for board

GND Gnd for board

J3 SCL Line for I2C0

J4 SDA Line for I2C0

J5 SCL Line for I2C1

J6 SDA Line for I2C1

Table 19. Test board pin details

Document Version 1.1

Page 42 of 50

I2C PRU Firmware

 I2C and SMBus IO Expander Evaluation Module 5.2.2

This module is available on TI.com. It is SMBus supporting IO Expansion module. The

following is the picture of module. Further, information about the module is available on

http://www.ti.com/tool/io-expander-evm.

Figure 18. SMbus Expander module

5.3 Test Setup

 Icev2AM335x 5.3.1

The following is the test setup connection required for the Firmware unit test. For this

setup, you need to 1 EEPROM board and 1 SMbus expander module.

Icev2AM335x Pin EEPROM Board Pin SMBUS expander Pin
Port J3, Pin 1 VCC (any pin) VCC

Port J3, Pin 2 GND (any pin) GND

Port J3, Pin 14 J3 (any pin) -

Port J4, Pin 21 J4 (any pin) -

Port J3, Pin 12 J4 (any pin) -

- J3 (any pin) SCL

- J4 (any pin) SDA

Table 20. icev2AM335x Test Setup

 idkAM437x 5.3.2

The following is the test setup connection needed to be done for Firmware unit test. For

this setup, you need to 1 EEPROM board and 2 SMbus expander module.

http://www.ti.com/tool/io-expander-evm

Document Version 1.1

Page 43 of 50

I2C PRU Firmware

idkAM437x Pin EEPROM Board Pin SMBUS expander Pin
Port J16, Pin 1 VCC (any pin) VCC (1

st
 Module)

Port J16, Pin 59 GND (any pin) GND (1
st
 Module)

- VCC (any pin) VCC (2
nd

 Module)

- GND (any pin) GND (2
nd

 Module)

Port J3, Pin 6 J3 (any pin) -

Port J3, Pin 5 J4 (any pin) -

Port J3, Pin 8 J4 (any pin) -

Port J16, Pin 46 J5 (any pin) -

Port J3, Pin 7 J6 (any pin) -

Port J16, Pin 48 J6 (any pin) -

- J3 (any pin) SCL (1
st
 Module)

- J4 (any pin) SDA (1
st
 Module)

- J5 (any pin) SCL (2
nd

 Module)

- J6 (any pin) SDA (2
nd

 Module)

Table 21. idkAM437x Test Setup

 idkAM572x 5.3.3

The following is the test setup connection required for the Firmware unit test. For this

setup, you need to 1 EEPROM board and 1 SMbus expander module.

idkAM572x Pin EEPROM Board Pin SMBUS expander Pin
Port J21, Pin 1 VCC (any pin) VCC

Port J21, Pin 60 GND (any pin) GND

Port J21, Pin 5 J3 (any pin) -

Port J46, Pin 4 J4 (any pin) -

Port J21, Pin 3 J4 (any pin) -

- J3 (any pin) SCL

- J4 (any pin) SDA

Table 22. idkAM572x Test Setup

 idkAM574x 5.3.4

The following is the test setup connection required for the Firmware unit test. For this

setup, you need to 1 EEPROM board and 1 SMbus expander module.

idkAM574x Pin EEPROM Board Pin SMBUS expander Pin
Port J21, Pin 1 VCC (any pin) VCC

Port J21, Pin 60 GND (any pin) GND

Port J21, Pin 5 J3 (any pin) -

Port J46, Pin 4 J4 (any pin) -

Port J21, Pin 3 J4 (any pin) -

- J3 (any pin) SCL

- J4 (any pin) SDA

Table 23. idkAM574x Test Setup

Document Version 1.1

Page 44 of 50

I2C PRU Firmware

5.4 Unit Test

The Unit Test checks all features of the I2C firmware. It tests all available instances, and

all supported speeds. It prints a UART log during the execution of each test, an example of

which is shown below.

 I2C Test1: Instance 5: Baud Rate 100KHz:

 Normal Read/Write test passed

 SMBUS test passed

 I2C Test2: Instance 5: Baud Rate 400KHz:

 Normal Read/Write test passed

 SMBUS test passed

 I2C Test3: Instance 5: Baud Rate 1MHz:

 Normal Read/Write test passed

 All tests have passed.

6 Firmware Feature Enhancement

The I2C firmware described in previous sections of this document (I2C_FW) executes on

AM437x ICSS1, but not AM437x ICSS0. This is because of the following hardware limitations

of ICSS0 relative to ICSS1:

 PRU IMEM size is reduced from 8 to 4 kB. The I2C_FW program size is 5.74 kB.

 PRU DMEM size is reduced from 8 to 4 kB. Although the I2C_FW data memory size is

only 3.25 kB = 0xD00 bytes, the starting offset of this data memory in DMEM is at

location 0x400 (see Table 2). Hence the I2C_FW data memory spans 0x400 - 0x1100.

 There are no external connections to IEP pins (e.g. pr0_edio_data_out). As mentioned in

Section 3.2.3, I2C_FW uses IEP DIGIO Output for SDA output.

 There is no Scratch Pad Memory (SPAD). I2C_FW uses SPAD for storing: (1) I2C

instance context; and (2) the PRU0/1 local copy of the IEP DIGIO Output Enable

register.

I2C_FW has been modified to execute from AM437x ICSS0 to provide additional flexibility in

targeting I2C firmware to the available ICSS hardware resources on AM437x. This modified

firmware (I2C_FW_AM437X_ICSS0) is described in this section.

6.1 Modifications to I2C Firmware for AM437X ICSS0

The modifications made to I2C_FW for I2C_FW_AM437X_ICSS0 include:

Document Version 1.1

Page 45 of 50

I2C PRU Firmware

 SMBus support was removed. This reduced the firmware program memory size from

5.74 kB to 3.55 kB so the program fits within the 4 kB ICSS0 PRU IMEM.

 The firmware was updated to use the remote ICSS1 IEP DIGIO Output pins instead of

the local ICSS0 IEP DIGIO pins since the ICSS1 IEP pins are available externally.

 DMEM was used in place of SPAD for storing I2C instance context. DMEM0 was used

for instances executing on PRU0, while DMEM1 was used for instances executing on

PRU1.

 DMEM was used in place of SPAD for storing the ICSS0 PRU0/1 local copies of the

ICSS1 IEP DIGIO Output Enable register. DMEM0 was used for storing these local

copies. However, the choice of DMEM0 is arbitrary, and the copies can alternately be

stored in DMEM1 without incurring additional PRU cycles.

 The DMEM base address of the I2C configuration memory (see Table 2) was moved

from 0x400 to 0x0 so the firmware data memory fits within the 4 kB ICSS0 PRU

DMEM.

6.2 Features and Limitations of AM437X ICSS0 I2C Firmware

I2C_FW_AM437X_ICSS0 supports the same features as I2C_FW (see Table 1), with these

exceptions:

 SMBus support is removed.

 HS mode (SCL clock frequency 1MHz) is currently unsupported.

It is not possible to simultaneously execute I2C_FW on ICSS1 and I2C_FW_AM437X_ICSS0

on ICSS0. This is because ICSS1 IEP DIGIO Output is used for SDA Output on both I2C_FW

and I2C_FW_AM437X_ICSS0.

6.3 I2C Firmware Resource Requirements

 Memory Requirements 6.3.1

The memory requirements for I2C_FW and I2C_FW_AM437X_ICSS0 on AM437x are

presented in the table below.

Firmware ICSS PRU IMEM

(bytes used /

available)

DMEM0

(bytes used /

available)

DMEM1

(bytes used /

available)

ICSS1

Shared Mem

(bytes used /

available)

I2C_FW ICSS1 PRU0 0x16F8

/0x2000

0xD00

/0x2000

0

/0x2000

0

PRU1 0x16F8

/0x2000

0

/0x2000

0xD00

/0x2000

0

I2C_FW_AM437X_ICSS0 ICSS0 PRU0 0xE30

/0x1000

0xDA8

/0x1000

0

/0x1000

0

PRU1 0xE30

/0x1000

0

/0x1000

0xDA0

/0x1000

0

Table 24. I2C Firmware Memory Requirements

 PRU Cycle Count Requirements 6.3.2

PRU cycle count data for I2C_FW and I2C_FW_AM437X_ICSS0 on AM437x for I2C

Standard/Full modes is presented below. As discussed in Section 3.4.5, the I2C firmware

Document Version 1.1

Page 46 of 50

I2C PRU Firmware

emulates I2C by dividing the I2C clock time into smaller time intervals (“time slice”), and

performing I2C operations (e.g. driving SCL to a particular logic level) within this

“oversampled” I2C clock time interval. The time slice interval is subdivided to provide support

for multiple I2C instances. The PRU cycle counts for all firmware states must fit within the

cycles for a subdivided time slice interval, i.e. all firmware state cycle counts must fit within the

instance time slice PRU cycle budget. Hence the cycle count data below focuses on the

maximum cycle count (Cmax) across all firmware states processed for different types of I2C

transactions. The cycle counts below were collected using the test program supplied with the

PRSDK-RTOS I2C LLD.

6.3.2.1 I2C_FW, AM437X ICSS1

Standard Mode

Bus speed: 100 kHz

Oversampling (OS) factor per SCL clock cycle: 4

Number of supported I2C instances: 4

PRU cycles per I2C clock cycle: 200 MHz/100 kHz = 2000 cycles.

PRU cycles per I2C clock cycle per OS Time Slice (Ts): 2000/4 = 500 cycles.

PRU cycles per I2C clock cycle per OS Time Slick per I2C instance (Ti): 500/4 = 125 cycles.

Test Case Cmax State Cmax Cmax/Ts Cmax/Ti

eeprom_write ADDRESS_SDA_BEGIN 47 0.094 0.376

eeprom_read ADDRESS_SDA_BEGIN 47 0.094 0.376

loopback RAISE_HOST_INTERRUPT_MEM_FOR_READY 46 0.092 0.368

test_probe ADDRESS_SDA_BEGIN 47 0.094 0.376

test_probe_inv_addr ADDRESS_SDA_BEGIN 47 0.094 0.376

eeprom_write_buffer_ovr RAISE_HOST_INTERRUPT_MEM_FOR_READY 46 0.092 0.368

bus_recovery_and_eeprom_read ADDRESS_SDA_BEGIN 47 0.094 0.376

timeout ADDRESS_SDA_BEGIN 47 0.094 0.376

Table 25. I2C_FW Standard Mode Max. Cycle Counts (Cmax) on AM437x ICSS1

Full Mode

Bus speed: 400 kHz

Oversampling (OS) factor per SCL clock cycle: 4

Number of supported I2C instances: 1

PRU cycles per I2C clock cycle: 200 MHz / 400 kHz = 500 cycles.

PRU cycles per I2C clock cycle per OS Time Slice (Ts): 500/4 = 125 cycles.

PRU cycles per I2C clock cycle per OS Time Slice per I2C instance (Ti): 125/1 = 125 cycles.

Document Version 1.1

Page 47 of 50

I2C PRU Firmware

Test Case Cmax State Cmax Cmax/Ts Cmax/Ti

eeprom_write ADDRESS_SDA_BEGIN 47 0.376 0.376

eeprom_read ADDRESS_SDA_BEGIN 47 0.376 0.376

loopback RAISE_HOST_INTERRUPT_MEM_FOR_READY 46 0.368 0.368

test_probe ADDRESS_SDA_BEGIN 47 0.376 0.376

test_probe_inv_addr ADDRESS_SDA_BEGIN 47 0.376 0.376

eeprom_write_buffer_ovr RAISE_HOST_INTERRUPT_MEM_FOR_READY 46 0.368 0.368

bus_recovery_and_eeprom_read ADDRESS_SDA_BEGIN 47 0.376 0.376

timeout ADDRESS_SDA_BEGIN 47 0.376 0.376

Table 26. I2C_FW Full Mode Max. Cycle Counts (Cmax) on AM437x ICSS1

HS Mode

Bus speed: 1 MHz

Oversampling (OS) factor per SCL clock cycle: 4

Number of supported I2C instances: 1

PRU cycles per I2C clock cycle: 200 MHz / 1 MHz = 200 cycles.

PRU cycles per I2C clock cycle per OS Time Slice (Ts): 200/4 = 50 cycles.

PRU cycles per I2C clock cycle per OS Time Slice per I2C instance (Ti): 50/1 = 50 cycles.

Test Case Cmax State Cmax Cmax/Ts Cmax/Ti

eeprom_write ADDRESS_SDA_BEGIN 34 0.68 0.68

eeprom_read ADDRESS_SDA_BEGIN 34 0.68 0.68

Table 27. I2C_FW HS Mode Max. Cycle Counts (Cmax) on AM437x ICSS1.

Note: cycle counts were only collected for EEPROM write and read transactions for HS mode

since the pattern of cycle counts for the other transaction types is expected to be consistent with

those collected for Standard and Full modes. In particular, Cmax is not expected to change for the

other transaction types.

6.3.2.2 I2C_FW_AM437X_ICSS0, AM437X ICSS0

Standard Mode

Test Case Cmax State Cmax Cmax/Ts Cmax/Ti

eeprom_write ADDRESS_SDA_BEGIN 77 0.154 0.616

eeprom_read ADDRESS_SDA_BEGIN 77 0.154 0.616

loopback RAISE_HOST_INTERRUPT_MEM_FOR_READY 74 0.148 0.592

test_probe ADDRESS_SDA_BEGIN 77 0.154 0.616

test_probe_inv_addr ADDRESS_SDA_BEGIN 77 0.154 0.616

eeprom_write_buffer_ovr RAISE_HOST_INTERRUPT_MEM_FOR_READY 74 0.148 0.592

bus_recovery_and_eeprom_read ADDRESS_SDA_BEGIN 77 0.154 0.616

timeout ADDRESS_SDA_BEGIN 77 0.154 0.616

Table 28. I2C_FW_AM437X_ICSS0 Standard Mode Max. Cycle Counts (Cmax) on AM437x ICSS0

Full Mode

Document Version 1.1

Page 48 of 50

I2C PRU Firmware

Test Case Cmax State Cmax Cmax/Ts Cmax/Ti

eeprom_write ADDRESS_SDA_BEGIN 77 0.616 0.616

eeprom_read ADDRESS_SDA_BEGIN 77 0.616 0.616

loopback RAISE_HOST_INTERRUPT_MEM_FOR_READY 74 0.592 0.592

test_probe ADDRESS_SDA_BEGIN 77 0.616 0.616

test_probe_inv_addr ADDRESS_SDA_BEGIN 77 0.616 0.616

eeprom_write_buffer_ovr RAISE_HOST_INTERRUPT_MEM_FOR_READY 74 0.592 0.592

bus_recovery_and_eeprom_read ADDRESS_SDA_BEGIN 77 0.616 0.616

timeout ADDRESS_SDA_BEGIN 77 0.616 0.616

Table 29. I2C_FW_AM437X_ICSS0 Full Mode Max. Cycle Counts (Cmax) on AM437x ICSS0

HS Mode

HS mode (SCL clock frequency 1MHz) is currently unsupported on ICSS0.

6.3.2.2.1 I2C_FW_AM437X_ICSS0 Maximum Cycle Counts Details

Standard/Full Modes

I2C_FW max(Cmax) : 47

I2C_FW_AM437X_ICSS0 max(Cmax): 77

77 = 47  (1110)  (32)  4

 47: I2C_FW max(Cmax), max. before any firmware updates

 (1110): cycles added for context restore/save using DMEM instead of SPAD

 (32): cycles added for using DMEM instead of SPAD for PRU0/1 copies of IEP DIGIO

Output Enable.

 4: cycles added for remote access to ICSS1 IEP from ICSS0

Total added cycles for ICSS0: 77  47  30.

Total cycles added for SPAD replacement w/ DMEM: 26. 26/30*100 = 86.7%.

Table 28 shows I2C_FW_AM437X_ICSS0 max(Cmax) fits within the instance time slice PRU

cycle budget for Standard mode @ 100 kHz. Similarly, Table 29 shows

I2C_FW_AM437X_ICSS0 max(Cmax) fits within the instance time slice PRU cycle budget for

Full mode @ 400 kHz.

HS Mode

HS mode (SCL clock frequency 1MHz) is currently unsupported on ICSS0.

6.4 Test Plan

 EVM Support 6.4.1

6.4.1.1 idkAM437x

The following table provides details concerning the AM437x IDK expansion header pins

assigned to I2C instances for I2C_FW_AM437X_ICSS0 and I2C_FW. This table was derived

Document Version 1.1

Page 49 of 50

I2C PRU Firmware

from Table 16. The last six rows were added for the IDK expansion header pins assigned to

I2C_FW_AM437X_ICSS0 I2C instances.

ICSS PRU Instance Functional Pin PRU GPIO Pins EVM Port EVM pin
ICSS1 PRU0 I2C0 SCL pr1_pru0_pru_r30_8 J3 6

SDA pr1_edio_data_out0 J3 5

pr1_pru0_pru_r31_9 J3 8

I2C1 SCL pr1_pru0_pru_r30_10 J16 46

SDA pr1_edio_data_out1 J3 7

pr1_pru0_pru_r31_11 J16 48

ICSS0 PRU0 I2C0 SCL pr0_pru0_pru_r30_8 J16 56

SDA pr1_edio_data_out0 J3 5

pr0_pru0_pru_r31_9 J16 37

I2C1 SCL pr0_pru0_pru_r30_10 J16 38

SDA pr1_edio_data_out1 J3 7

pr0_pru0_pru_r31_11 J16 58

Table 30. idkAM437x I2C Instances

 Test Setup 6.4.2

6.4.2.1 idkAM437x

The test setup connections required for the I2C firmware unit test are presented in the following

table. This setup is used for testing the I2C_FW_AM437X_ICSS0 binaries for ICSS0, as well as

the I2C_FW binaries for ICSS1. The setup uses the same external I2C boards covered in Section

5.2. For this setup, 1 EEPROM board and 2 SMBus expander modules are needed. The

EEPROM board and SMBus expander modules are used for testing I2C_FW binaries, while only

the EEPROM board is used for testing of the I2C_FW_AM437X_ICSS0 binaries.

The table below was derived from Table 21. The last four rows were added for the connections

required for I2C_FW_AM437X_ICSS0 testing, and the last column was added to describe which

binaries require the connection in each row.

Document Version 1.1

Page 50 of 50

I2C PRU Firmware

idkAM437x Pin EEPROM Board Pin SMBus expander Pin Used by

ICSS1/0

binaries
Port J16, Pin 1 VCC (any pin) VCC (1

st
 Module) ICCS1 & ICSS0

Port J16, Pin 59 GND (any pin) GND (1
st
 Module) ICCS0 & ICSS0

- VCC (any pin) VCC (2
nd

 Module) ICSS1

- GND (any pin) GND (2
nd

 Module) ICSS1

Port J3, Pin 6 J3 (any pin) - ICSS1

Port J3, Pin 5 J4 (any pin) - ICSS1 & ICSS0

Port J3, Pin 8 J4 (any pin) - ICSS1

Port J16, Pin 46 J5 (any pin) - ICSS1

Port J3, Pin 7 J6 (any pin) - ICSS1 & ICSS0

Port J16, Pin 48 J6 (any pin) - ICSS1

- J3 (any pin) SCL (1
st
 Module) ICSS1

- J4 (any pin) SDA (1
st
 Module) ICSS1

- J5 (any pin) SCL (2
nd

 Module) ICSS1

- J6 (any pin) SDA (2
nd

 Module) ICSS1

Port J16, Pin 56 J3 (any pin) - ICSS0

Port J16, Pin 37 J4 (any pin) - ICSS0

Port J16, Pin 38 J5 (any pin) - ICSS0

Port J16, Pin 58 J6 (any pin) - ICSS0

Table 31. idkAM437x Test Setup

 Unit Test 6.4.3

The I2C_FW_AM437X_ICSS0 Unit Test checks all features of the I2C firmware. It tests all

available instances, and all bus speeds. It prints a UART log during the execution of each test, an

example of which is shown below.

I2C Test1: Instance 3: Baud Rate 100KHz:

Normal Read/Write test passed

I2C Test2: Instance 3: Baud Rate 400KHz:

Normal Read/Write test passed

I2C Test3: Instance 3: AM437x ICSS0: Baud Rate 781.25 kHz:

Normal Read/Write test passed

I2C Test4: Instance 4: Baud Rate 100KHz:

Normal Read/Write test passed

All tests have passed.

I2C_FW Unit Test is unchanged, and is described in Section 5.4.

