
Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

QOS Scheduler Family Firmware Specification

Version B
Jul 17 2015

Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0

Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative

Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2015 Texas Instruments Incorporated - http://www.ti.com/

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

Revision Record

Document Title: Software Design Specification

Revision

Description of Change

A Initial Release (Firmware v 2.1.0.9)

B Add simultaneous packets and bytes to the narrow qos scheduler; add group stat
query to narrow qos + wide qos (but not qos+drop) (Firmware v 2.1.0.10)

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

Contents

1. OVERVIEW ... 4

1.1 RELATED DOCUMENTS ... 4
1.2 OVERVIEW ... 4

1.2.1 What this Specification Provides .. 4

2. FUNCTIONAL DESCRIPTION ... 5

2.1 BASIC OPERATION ... 5
2.1.1 Drop Scheduler... 5
2.1.2 Push Proxy ... 7
2.1.3 QoS Scheduler ... 7
2.1.4 Congestion Management ... 12

3. QOS ALGORITHM DESCRIPTION ... 12

3.1 SOFTWARE OVERVIEW ... 12
3.1.1 Pseudocode Configuration and State Data Structures .. 12
3.1.2 Foreground Task Pseudocode ... 15
3.1.3 Port Scheduler Pseudocode ... 15
3.1.4 Group Scheduler Pseudocode ... 20
3.1.5 Queue Scheduler Pseudocode .. 21
3.1.6 Drop Scheduler Pseudocode ... 21
3.1.7 Background Task (Congestion) Pseudocode ... 26

3.2 QOS SCHEDULER SHADOW CONFIGURATION SPECIFICATION .. 28
3.2.1 QoS Scheduler Queue ... 28
3.2.2 QoS Scheduler Group (Bytes or Packets) ... 28
3.2.3 QoS Scheduler Group (Bytes And Packets) .. 29
3.2.4 QoS Scheduler Physical Port (Bytes Or Packets) .. 30
3.2.5 QoS Scheduler Physical Port (Bytes And Packets) ... 31
3.2.6 Complete Shadow Configuration Spec (QoS Scheduler Full/Lite Ports supporting Bytes or
Packets) 32
3.2.7 Complete Shadow Configuration Spec (QoS Scheduler Full/Lite Ports supporting Bytes And
Packets) 33
3.2.8 Drop Scheduler Queue Configuration .. 33
3.2.9 Drop Scheduler Config Profile Configuration in Shadow ... 34
3.2.10 Drop Scheduler Top Level Config in Shadow .. 35
3.2.11 Drop Scheduler Output Profile Config in Shadow .. 35
3.2.12 Dedicated Query Statistics Shadow Area .. 36
3.2.13 Group Statistics in Common Shadow Area .. 37
3.2.14 Push Statistics .. 38
3.2.15 Push Proxy ... 38
3.2.16 Input Queue Map for QoS Scheduler ... 39
3.2.17 Input Queue Map for Drop Scheduler .. 40

4. FIRMWARE COMMAND INTERFACE .. 41

4.1 FIRMWARE COMMAND HANDSHAKE .. 41
4.1.1 Command Handshake .. 41
4.1.2 Command Buffer .. 41
4.1.3 QoS Scheduler Queue Region Base ... 42
4.1.4 Timer Configuration .. 43
4.1.5 Enable / Disable QoS Scheduler Physical Port .. 43
4.1.6 Copy Configuration To/From Shadow .. 44
4.1.7 Stats Request ... 44

4.2 INTERNAL MEMORY ALLOCATION ... 45
4.2.1 PDSP / QMSS Scratch RAM Allocation ... 45

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

1. Overview

1.1 Related Documents

Document Link

1.2 Overview

This document specifies the PDSP firmware operation and command interface of a “Quality of Service” (QOS)
functionality designed to run on the Multicore Navigator of Keystone I/II devices. This document covers 3
different firmware builds which are “qos_sched”, “qos_sched_drop_sched”, and “qos_sched_wide”. These
differ based on whether they have the drop scheduler, and the number and size of ports.

1.2.1 What this Specification Provides

 Functional Description
o Basic Operation
o Algorithm Details

 Host processor interface
o Firmware command interface
o Scratchpad memory usage

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

2. Functional Description

2.1 Basic Operation

The quality of service (QOS) PDSP is charged with the job of policing all packet flows in the system, and
verifying that neither the peripherals nor the host CPU are overwhelmed with packets.

The key to the functionality of the QOS system is the arrangement of packet queues. There are two distinct
scheduling blocks each of which has two sets of packet queues, the QOS ingress queues, and the final
destination queues.

There is a high priority block called the drop scheduler which implements a model of tail drop and RED
(Random Early Detect/Drop). It has 80 input queues each of which can be mapped to an output queue. Its
goal is to run as fast as possible to keep the input queues empty, while examining the depth of the output
queues. It therefore models tail drop or RED on the output queues when it transfers packets from the input
queues. (It is a model of tail drop/RED, not actual tail drop/RED because it is not able to atomically act as
part of a push operation. Thus a series of fast pushes will allow more queued descriptors than a pure tail
drop/RED would allow implemented as part of the push).

There is a medium priority block which is the QoS Scheduler. Each QoS scheduler physical port maps to one
destination queue that can be queue supported by the QMSS whether it is processed by peripherals, by one
of the host processors, or even an input queue to another QoS scheduler port.

Finally there is a low priority block which enforces queue depth on the QoS scheduler ports.

2.1.1 Drop Scheduler

The drop scheduler runs once per timer tick.

If the drop scheduler is enabled in the build, then the build also only supports 20 lite ports. These lite ports do
not support any of the group thresholds (cir/pir/wrr) because only the port’s CIR is functionally necessary
when there is one group.

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

Drop Scheduler

64 “DSCP” Input Queues

8 “PRI” Input Queues

8 Hierarchical Input Queues

Tail Drop,

Random Early Drop

Random Early Mark*

Configuration:

Profile index for each

queue

Drop/Fwd stats for

each queue

64 “DSCP” Output Queues

8 “PRI” Output Queues

Drop Marked Packets

[Configuration = CIR]
8 Hierarchical Output Queues

Config

Profiles (16)

Figure 1: Drop Scheduler Block Diagram

2.1.1.1 Input queues

There are 80 regular input queues. There are no internal QoS assumptions based on these queues.
However, it is dimensioned such that there is a queue for each of the 64 possible DSCP levels, plus 8 queues
for each of the 8 possible 802.1p priorities. Each queue supports statistics, a mode (red mark, red drop, and
tail drop), min/max average thresholds, absolute maximum threshold, a drop probability, and an output queue
assignment.

There may be 8 additional hierarchical queues. These go together with RED mark. The details for these
queues are a future feature.

2.1.1.2 Tail Drop

In tail drop mode, only the absolute maximum threshold (Labs) in bytes or packets is used to drop packets. If
the number of packets (or bytes) in the output queue exceeds the threshold then all input packets are
dropped until the output queue falls below the threshold. The average thresholds are not used, nor is the
drop probability used.

2.1.1.3 Fixed probability RED

A simple RED algorithm is supported. It can be configured to mark or drop packets. In this version, only drop
is supported, but mark may be implemented as a future feature.

RED defines an upper threshold (Lmax) and a lower threshold (Lmin). These can be configured in bytes or
packets units. There is also a drop probably Pd that is configured.

RED computes an average depth of the associated output queue. Its time constant (tc) is configurable power
of 2. Once per interval, the average is updated using (where Di is instantaneous depth for averaging, input di
is instantaneous depth of input queue, and output di is instantaneous depth of output queue. Di, di are
integers. da is a fixed point number (Q format) with the binary point at location tc.
 Di = (input di/2) + output di

 da = da – (da >> tc) + Di

If the average depth da of the output queue is:
 da <= Lmin: no packets are marked or dropped

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

 da >= Lmax: 100% of the packets are marked or dropped
 Lmin < da < Lmax: Packets are dropped/marked with probability = Pd * (da / (Lmax – Lmin))

The absolute maximum threshold (Labs) may be used together with RED. This allows a hard maximum of
packets when desired, even if the average da hasn’t converged.

If the instantaneous depth of the output queue (di) is:
 di >= Labs: all input packets are dropped

 If the instantaneous total packets in the output queue exceeds the absolute max threshold, all the packets
are dropped from the input queue until the instantaneous total packets falls below the threshold.

2.1.1.4 Statistics

Each input queue has a set of associated statistics which are bytes forwarded, bytes dropped, packets
forwarded, and packets dropped. Stats can be requested atomically so input statistics can be calculated from
forward+drop. When operating in RED mark or RED drop mode, the average queue depth is also available
as a statistic.

2.1.2 Push Proxy

There is a Push Proxy feature which enables pushing the C+D register of any queue. This can be used to
workaround HW issues in the HW proxy on some devices. The FW waits until both size and pointer in the
proxy become nonzero, then implements a 64-bit push, then sets the input parameters to 0. The queue
number and size register shall be written together; the pointer register can be written separately in any order.
See section 3.2.15.

2.1.3 QoS Scheduler

When the drop scheduler is not present, the QoS scheduler is arranged with a total of 12 physical ports. The
first two physical ports are “full” physical ports that each supports 5 groups of 8 queues (40 total ingress
queues per port). The last 10 physical ports are “lite” physical ports that each supports one group of four
queues.

When the drop scheduler is present, the QoS scheduler supports 20 lite physical ports.

In the “wide” build, the QoS scheduler supports 1 full physical port with 17 groups of 8 queues (136 total
ingress queues). Note that the “wide” build has a different interface/memory map due to the size of a shadow
supporting 136 queues.

The QoS scheduler with 2 full ports and 10 lite ports supports CIR/PIR shaping by both bytes and packets
simultaneously (as well as shaping either bytes or packets). The drop scheduler and wide builds do NOT
support simultaneous bytes and packets.

The wide build and QoS with 2 full ports and 10 lite ports support querying an entire group of queue stats at a
time. The build with drop scheduler only supports querying queue stats one queue at a time.

The QoS scheduler operates on a configurable timer. On each tick of the timer, each physical port will have
an opportunity to schedule its CIR (committed information rate).
Each port will select group(s) to schedule using a weighted round robin algorithm (WRR). Each group also
has a CIR separate from that port. Once a group is selected using WRR it will schedule packets from its
queues up to its CIR. Packets are selected from queues using a combination of strict priority (SP) and
weighted round robin (WRR).

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

QoS Scheduler Lite Physical Port 15

QoS Scheduler Lite Physical Port 14

QoS Scheduler Lite Physical Port 4-13

QoS Scheduler Lite Physical Port 3

QoS Scheduler Lite Physical Port 2

Port 2 Output Queue

Port 3: 4 Input Queues

Ports 4-13: 10*4 Input Queues

Port 14: 4 Input Queues

Port 15: 4 Input Queues

Port 3 Output Queue

Ports 4-13 Output

Queues

Port 14 Output Queue

Port 15 Output Queue

QoS Scheduler Full Physical Port 1

QoS Scheduler Full Physical Port 0

QoS Scheduler

Port 1: 40 Input Queues

Port 2: 4 Input Queues

Port 0: 40 Input Queues

Port 1 Output Queue

Port 0 Output Queue

Figure 2: QoS Scheduler Block Diagram

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

2.1.3.1 QOS Ingress Queues

There is a designated set of queues in the system that feed into the QOS PDSP. These are called QOS
queues. The QOS queues are simply queues that are controlled by the firmware running on the PDSP. There
are no inherent properties of the queues that fix them to a specific purpose. Any queue aligned to a multiple
of 32 queues can be configured to be the ingress queue base.

The input queues are statically assigned to the physical ports. Queues 0-39 are assigned to the first port, 40-
79 to the second port, 80-83 to the third, with four queues assigned to each of the remaining ports.

2.1.3.2 Physical Ports

Each physical port has a configurable committed information rate (CIR) that is specified as a fraction of
packets or bytes that are granted for each timer tick. It also has a maximum allowed CIR that prevents
excessive credit from accumulating when there is traffic below the CIR.

Each “full” port supports up to 5 groups but software can configure fewer groups. Each “lite” port only
supports a single group. The arrangement of full and lite ports and their connection to queues in the system
are shown in Figure 3 and Figure 4.

The function of a port is to grant itself CIR credit each timer tick, then to select groups to schedule packets
using weighted round robin. Each group has a configurable weight (in bytes or packets) for this purpose.

Each physical port also supports an output throttle threshold. This prevents the port from forwarding packets
if the output queue is not draining. However, credits are granted and capped like normal even when throttled.

Two adjacent physical lite ports can be combined into a “joint” port that supports 8 inputs. This must be an
even/odd pair, where if port 0 is even, the odd port is 1. This works either with or without drop scheduler.

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

QoS Scheduler Full Physical Port 1

QoS Scheduler Full Physical Port 0

QoS Scheduler Group 4

QoS Scheduler Group 3

QoS Scheduler Group 2

QoS Scheduler Group 1

QoS Scheduler Group 0

D
e

c
re

a
s
in

g
 P

ri
o

ri
ty

Port 0 Output Queue

Strict Priority (SP)

Queue Scheduler

Weighted Round

Robin (WRR) Queue

Scheduler

Best Effort (BE)

Strict Priority Queue

Scheduler

Weighted Round Robin Group

Scheduler

SP Queue

Selector takes

input #

[0, SP)

WRR Queue

Selector takes

inputs #

[SP, WRR)

WRR Queue

Selector takes

inputs #

[WRR, BE)

Group 0 Input Q 0

Group 0 Input Q 1

Group 0 Input Q 6

Group 0 Input Q 5

Group 0 Input Q 4

Group 0 Input Q 3

Group 0 Input Q 2

Group 0 Input Q 7

Group 1: 8 Input

Queues

Group 2: 8 Input

Queues

Group 3: 8 Input

Queues

Group 4: 8 Input

Queues

Group 4 Output

Group 0 Output

Group 2 Output

Group 3 Output

Group 1 Output

Port 1: 40

Input

Queues

Port 1 Output Queue

Figure 3: QoS Scheduler Full Port Block Diagram

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

QoS Scheduler Lite Physical Port 15

QoS Scheduler Lite Physical Port 14

QoS Scheduler Lite Physical Port 5-13

QoS Scheduler Lite Physical Port 4

QoS Scheduler Lite Physical Port 3

QoS Scheduler Lite Physical Port 2

QoS Scheduler Group 0
Port 2 Output Queue

Strict Priority (SP)

Queue Scheduler

SP Queue

Selector takes

input #

[0, SP)

Group 0 Output

Port 3: 4 Input Queues

Port 2, Group 0 Input Q 0

Port 2, Group 0 Input Q 1

Port 2, Group 0 Input Q 2

Port 2, Group 0 Input Q 3

Port 4: 4 Input Queues

Port 5-13: 9*4 Input

Queues

Port 14: 4 Input Queues

Port 15: 4 Input Queues

Port 3 Output Queue

Port 4 Output Queue

Port 5-13 Output Queues

Port 14 Output Queue

Port 15 Output Queue

Figure 4: QoS Scheduler Lite Port Block Diagram

2.1.3.3 Groups

Each group contains up to 8 queues (4 on a lite port). Each group has a weight so the port can perform
weighted round robin scheduling across all the groups. Each group has a configurable CIR and a peak
information rate (PIR) associated with it. The port first gives each group an opportunity to use its CIR. If all
groups have a chance at their respective CIR, then each group has an opportunity to use the rest of the port’s
CIR using the group’s PIR.

The queues can be divided among strict priority queues (SP), weighted round robin (WRR), and best effort
(BE) queues.

The queues are arranged in each group in strict priority order such that queue 0 is highest priority and queue
7 is the lowest priority. The strict priority queues must start at 0, while the WRR queues must follow the SP
queues, and the BE queues must follow the WRR It is legal to have 0 to 8 queues of each type as long as
the total is <= 8.

This is configured by specifying the total number of queues, the number of SP queues, and the number of
WRR queues. The number of BE queues is BE = total – wrr – sp.

2.1.3.4 Queues within Groups

2.1.3.4.1 Strict Priority Queues

The first queues can be strict priority queues. This means that all the packets from queue 0 must be drained
before any packets can be drained from queue 1. Packets from queue 2 will only be drained if there are no
packets on queues 0 and 1, and so on.

2.1.3.4.2 Weighted Round Robin Queues

The weighted round robin queues are only drained after all the SP queues are drained. Each queue has an
associated weight specified in bytes or packets. Packets are scheduled in a round robin fashion unless the
queue has no remaining weight credit.

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

2.1.3.4.3 Best Effort Queues

Best effort queues follow the WRR queues. These are additional strict priority queues, but they are lower
priority than the WRR queues.

2.1.3.5 Port configuration rules

The ports are configured using a shadow configuration in the PDSP’s scratch memory. There are commands
to copy one of the port’s current configuration to the shadow area, to copy the shadow area to one of the
port’s active configuration. This enables reconfiguration of credits without having potentially inconsistent
configurations actively in use. Note that the number of groups or queues per group should not be changed
(especially decreased) otherwise descriptors can be left (leaked) in the newly disabled queues. The firmware
will recycle all the descriptors on all the queues of a port when the port is disabled.

2.1.4 Congestion Management

Each QoS scheduler queue can be configured with an optional congestion threshold (a value of 0 disabled
congestion dropping). Whenever the firmware is waiting for a timer tick, it will check all the queues with
configured congestion thresholds to see if the number of bytes or number of packets on the queue exceeds
the threshold. It will drop packets from the head of the queue until the number of bytes or packets is below
the threshold.

For “normal” operation, the QoS firmware does not examine anything inside the descriptors or associated
buffers (if any). However, in order to drop descriptors, it examines four fields within the descriptor which
presumes the descriptor is formatted as a CPPI descriptor. The “Packet Return Queue Mgr #” and “Packet
Return Queue #” fields are used to return the descriptor as if the packet were consumed by a packet DMA.
The “Return Push Policy” field is honored. Finally the “Packet Id” must be set to monolithic (2) or host (0).

If the congestion threshold is disabled, then the addresses pointed to be the descriptors are not touched, and
therefore, do not even have to point to real memory.

3. QOS Algorithm Description

3.1 Software Overview

The firmware assumes 104 QOS queues are allocated to the QOS PDSP. They are physically located at a
fixed base (most likely not zero), but are referred to as QOS queues 0 through 103 in configuration. The base
queue should be configured by the application after allocating a block of 104 contiguous queues aligned to a
multiple of 32 queues.

The algorithm is specified by the following pseudocode. An executable version of the foreground task is used
as part of the QMSS LLD’s unit test for the QoS Scheduler Firmware. An executable version of the
background task is not used because a cycle-exact model would be needed to demonstrate correct operation.

3.1.1 Pseudocode Configuration and State Data Structures

#define QMSS_QOS_SCHED_BYTES_SCALE_SHIFT 11

#define QMSS_QOS_SCHED_PACKETS_SCALE_SHIFT 20

#define QMSS_QOS_WRR_BYTES_SCALE_SHIFT (QMSS_QOS_SCHED_BYTES_SCALE_SHIFT - 3)

#define QMSS_QOS_WRR_PACKETS_SCALE_SHIFT (QMSS_QOS_SCHED_PACKETS_SCALE_SHIFT - 3)

#define NUM_PHYS_PORTS 16

#define NUM_DROP_CFG_PROFILES 16

#define NUM_DROP_DSCP_QUEUES 64

#define NUM_DROP_PRI_QUEUES 8

#define NUM_DROP_INPUT_QUEUES (NUM_DROP_DSCP_QUEUES + NUM_DROP_PRI_QUEUES + 8)

#define NUM_DROP_STATS_BLOCKS 48

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

#define NUM_DROP_OUTPUT_PROFILES 36

#define NUM_QOS_QUEUES (40+40+14*4)

typedef struct _QOSQUEUE_PROC {

 int32_t WrrCurrentCredit; // Current Queue WRR credit

 uint32_t PacketsForwarded; // Number of packets forwarded

 uint32_t PacketsDropped; // Number of packets dropped

 uint64_t BytesForwarded; // Number of bytes forwarded

 uint64_t BytesDropped; // Number of bytes dropped

 uint16_t QueueNumber; // Input queue

} QOSQUEUE_PROC;

typedef struct _QOSQUEUE_CFG {

 int32_t WrrInitialCredit; // Initial Queue WRR credit on a "new" schedule

 uint32_t CongestionThresh; // The max amount of congestion before drop

} QOSQUEUE_CFG;

typedef struct _LOGICAL_GRP_PROC {

 int32_t CirCurrentByByte; // Current CIR credit

 int32_t CirCurrentByPkt; // Current CIR credit

 int32_t PirCurrentByByte; // Current PIR credit

 int32_t PirCurrentByPkt; // Current PIR credit

 uint8_t NextQueue; // The next RR queue to examine in the group

 uint8_t WrrCreditMask; // Flag mask of WRR queues that have WRR credit

remaining

 int32_t WrrCurrentCredit; // Current Group WRR credit

 QOSQUEUE_PROC Queue[8]; // Up to eight queues per logical group

} LOGICAL_GRP_PROC;

typedef struct _LOGICAL_GRP_CFG {

 bool fIsSupportByteShaping; // scheduling using *ByByte is enabled

 bool fIsSupportPacketShaping; // scheduling using *ByPacket is enabled

 int32_t CirIterationByByte; // CIR credit per iteration

 int32_t CirIterationByPkt; // CIR credit per iteration

 int32_t PirIterationByByte; // PIR credit per iteration

 int32_t PirIterationByPkt; // PIR credit per iteration

 int32_t CirMaxByByte; // Max total CIR credit

 int32_t PirMaxByByte; // Max total PIR credit

 int32_t CirMaxByPkt; // Max total CIR credit

 int32_t PirMaxByPkt; // Max total PIR credit

 int32_t WrrInitialCredit; // Initial Group WRR credit on a "new" schedule

 uint8_t QueueCount; // Total number of active QOS queues (up to 8)

 uint8_t SPCount; // The number of SP queues (usually 2 or 3)

 uint8_t RRCount; // The number of RR queues (usually QueueCount-SPCount)

 QOSQUEUE_CFG Queue[8]; // Up to eight queues per logical group

} LOGICAL_GRP_CFG;

typedef struct _PHYS_PORT_PROC {

 bool fEnabled; // port enable flag

 int32_t CirCurrentByByte; // Current CIR credit

 int32_t CirCurrentByPkt; // Current CIR credit

 uint8_t WrrCreditMask; // Flag mask of WRR groups that have WRR credit

remaining

 uint8_t NextGroup; // The next RR group to examine

 uint8_t LastTimerTicks; // Used to schedule missed interrupts. Initialized

 // to TimerTicks when port is turned on.

 LOGICAL_GRP_PROC Group[5]; // Up to 5 logical groups

} PHYS_PORT_PROC;

typedef struct _PHYS_PORT_CFG {

 bool fByteWrrCredits; // When set, WRR credits are always in bytes

 bool fByteCongest; // When set, congestion is in bytes, else packets

 bool fByteDestThrottle; // dest throttle is bytes, else packets

 bool fIsJoint; // When set, even/odd pair of ports behaves as one

 bool fIsSupportByteShaping; // scheduling using *ByByte is enabled

 bool fIsSupportPacketShaping; // scheduling using *ByPacket is enabled

 int32_t CirIterationByByte; // CIR credit per iteration

 int32_t CirIterationByPkt; // CIR credit per iteration

 int32_t CirMaxByByte; // Max total CIR credit

 int32_t CirMaxByPkt; // Max total CIR credit (always in bytes)

 uint8_t GroupCount; // The number of logical groups

 uint8_t OverheadBytes; // Number of bytes of wire overhead to account, beyond

packet size in QM.

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

 // This is often set to 24. This only affects credits

deducted,

 // not statistics. It also only has effect on credits

configured

 // as bytes, not packets.

 uint8_t RemoveBytes; // Number of bytes to remove from each packet size

 uint16_t DestThrottleThresh;

 uint16_t DestQueueNumber; // Output queue

 LOGICAL_GRP_CFG Group[5]; // Up to 5 logical groups

} PHYS_PORT_CFG;

typedef struct _DROP_CFG_PROFILE

{

 bool fByteTailThresh; // Units for tail drop are bytes

#define DROP_MODE_TAIL_ONLY 0 // Tail drop only

#define DROP_MODE_RED 1 // Random Early Drop

#define DROP_MODE_REM 2 // Random Early Mark (Not currently supported)

 uint8_t Mode;

 uint8_t TC; // Time constant as shift

 uint32_t RedThreshLow; // Avg Below this threshold, no packets are dropped/marked

 // Between these thresholds, packets are dropped/marked

 // randomly with probability

 // Formula below assumes floating point so q format shifts

are omitted

 // pscale = (avg queue depth - redThreshLow) / (redThreshHigh

- redTheshLow)

 // prob = pscale * redProb

 uint32_t RedThreshHigh; // Avg Above this threshold all packets are dropped/marked

 uint32_t RedHighMLowRecip; // 1/((RedThreshHigh - RedThreshLow)<<TC) in Q16

 uint32_t TailThresh; // Above this threshold all packets are dropped (0 disables)

// configuration ends, state begins

} DROP_CFG_PROFILE;

typedef struct _DROP_OUTPUT_PROFILE

{

 uint16_t DestQueueNumber; // Output queue

 uint16_t RedProb; // Drop/mark probability in Q16 (0x8000 = 0.5).

 uint8_t CfgProfIdx; // Configuration of thresholds

 bool fEnabled; // Profile is valid/enabled

 // configuration ends, state begins

 uint32_t QAvg; // Average Q depth in bytes in Q DROP_PROFILE.TC

} DROP_OUTPUT_PROFILE;

typedef struct _DROP_STATS

{

 uint32_t BytesForwarded; // Bytes Forwarded

 uint32_t BytesDropped; // Bytes Dropped (or marked)

 uint32_t PacketsForwarded; // Packets Forwarded

 uint32_t PacketsDropped; // Packets dropped

} DROP_STATS;

typedef struct _DROP_QUEUE

{

 bool fEnabled; // queue is enabled/valid

 uint8_t StatsBlockIdx; // Stats block to update

 uint8_t OutProfIdx; // Output que profile index

 // configuration ends, state begins

} DROP_QUEUE;

typedef struct _DROP_SCHED

{

 bool fEnabled; // Drop Sched Enabled?

 uint8_t Interrupt; // Interupt number in INTD to use to signal stats

overflow

 uint16_t BaseQueue;

 uint32_t rng_s1; // Random seed for deciding whether to drop packets

 uint32_t rng_s2; // Random seed for deciding whether to drop packets

 uint32_t rng_s3; // Random seed for deciding whether to drop packets

 DROP_QUEUE Queues[NUM_DROP_INPUT_QUEUES]; // drop queues

 DROP_CFG_PROFILE CfgProfiles[NUM_DROP_CFG_PROFILES];

 DROP_OUTPUT_PROFILE OutProfiles[NUM_DROP_OUTPUT_PROFILES];

 DROP_STATS StatsBlocks[NUM_DROP_STATS_BLOCKS];

 uint32_t queEnBits[(NUM_DROP_INPUT_QUEUES + 31) /32];

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

// configuration ends, state begins

} DROP_SCHED;

typedef struct _QOS_SCHED

{

 uint8_t PortCount;

 uint8_t TimerTicks;

 uint16_t BaseQueue;

 PHYS_PORT_CFG PortsCfg[NUM_PHYS_PORTS];

 PHYS_PORT_PROC PortsProc[NUM_PHYS_PORTS];

} QOS_SCHED;

DROP_SCHED DropSched;

QOS_SCHED QosSched;

3.1.2 Foreground Task Pseudocode

void ForegroundTask(QOS_SCHED *sched)

{

 uint32_t i;

 // Process one control message

 check_for_cmd();

 // Run Drop Scheduler

 if (DropSched.fEnabled)

 {

 DropScheduler (&DropSched);

 }

 // Schedule packets from all active physical ports

 for(i=0; i<sched->PortCount; i++)

 if (sched->PortsProc[i].fEnabled)

 PhysPortScheduler(sched, &sched->PortsCfg[i], &sched->PortsProc[i]);

}

3.1.3 Port Scheduler Pseudocode

// Returns 0 if no space left, else 1

int32_t PhysPortUpdateOutputSpace (PHYS_PORT_CFG *pPort, int32_t *OutputSpaceAvail, int32_t

BytesUsed)

{

 if (*OutputSpaceAvail)

 {

 if (pPort->fByteDestThrottle)

 {

 *OutputSpaceAvail -= BytesUsed + pPort->OverheadBytes - pPort->RemoveBytes;

 }

 else

 {

 (*OutputSpaceAvail)--;

 }

 if (*OutputSpaceAvail <= 0)

 {

 return 0;

 }

 }

 return 1;

}

int isCreditAvail (int32_t credit1, int32_t credit2, uint8_t flag1, uint8_t flag2)

{

 int creditAvail = 1; /* flag1 || flag2 if do care above invalid config */

 if((credit1 <= 0) && (flag1)) {

 creditAvail = 0;

 }

 if((credit2 <= 0) && (flag2)) {

 creditAvail = 0;

 }

 // don't care if neither fIsSupportPacketShaping nor fIsSupportByteShaping is set; invalid config

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

 return creditAvail;

}

//

// This is the function that schedules packets on a physical port

//

void PhysPortScheduler(QOS_SCHED *sched, PHYS_PORT_CFG *pPortCfg, PHYS_PORT_PROC *pPortProc)

{

 int32_t BytesUsed; // Bytes used is returned from the Logical Scheduler

 uint8_t PacketPendingMask; // Flag mask of RR groups that are not empty

#ifdef MULTIGROUP

 int32_t WrrCreditUsed; // Wrr Credit used (in packets or bytes as configured)

 uint8_t PirCreditMask = 0; // Flag set when more PIR credit remains

#endif

 int fPacketsSent;

 int i;

 int OutputSpaceAvail = 0;

 /* Add credits for all TimerTicks that occurred since last time this port ran */

 while ((uint8_t)(sched->TimerTicks - pPortProc->LastTimerTicks) > 0)

 {

 pPortProc->LastTimerTicks++;

 //

 // Add credits for all time based credit counters

 //

 // Credit for the main port

 if (pPortCfg->fIsSupportPacketShaping)

 {

 pPortProc->CirCurrentByPkt += pPortCfg->CirIterationByPkt;

 if(pPortProc->CirCurrentByPkt > pPortCfg->CirMaxByPkt)

 pPortProc->CirCurrentByPkt = pPortCfg->CirMaxByPkt;

 }

 if (pPortCfg->fIsSupportByteShaping)

 {

 pPortProc->CirCurrentByByte += pPortCfg->CirIterationByByte;

 if(pPortProc->CirCurrentByByte > pPortCfg->CirMaxByByte)

 pPortProc->CirCurrentByByte = pPortCfg->CirMaxByByte;

 }

 // Credit for the port's logical groups

#ifdef MULTIGROUP

 for(i=0; i<pPortCfg->GroupCount; i++)

 {

 if (pPortCfg->Group[i].fIsSupportPacketShaping)

 {

 pPortProc->Group[i].CirCurrentByPkt += pPortCfg->Group[i].CirIterationByPkt;

 // Cap CIR credit at its max level

 if(pPortProc->Group[i].CirCurrentByPkt > pPortCfg->Group[i].CirMaxByPkt)

 pPortProc->Group[i].CirCurrentByPkt = pPortCfg->Group[i].CirMaxByPkt;

 pPortProc->Group[i].PirCurrentByPkt += pPortCfg->Group[i].PirIterationByPkt;

 if(pPortProc->Group[i].PirCurrentByPkt> 0)

 {

 // Track every group with PIR credit for later

 PirCreditMask |= (1<<i);

 // Cap PIR credit at its max level

 if(pPortProc->Group[i].PirCurrentByPkt > pPortCfg->Group[i].PirMaxByPkt)

 pPortProc->Group[i].PirCurrentByPkt = pPortCfg->Group[i].PirMaxByPkt;

 }

 }

 if (pPortCfg->Group[i].fIsSupportByteShaping)

 {

 pPortProc->Group[i].CirCurrentByByte += pPortCfg->Group[i].CirIterationByByte;

 // Cap CIR credit at its max level

 if(pPortProc->Group[i].CirCurrentByByte > pPortCfg->Group[i].CirMaxByByte)

 pPortProc->Group[i].CirCurrentByByte = pPortCfg->Group[i].CirMaxByByte;

 pPortProc->Group[i].PirCurrentByByte += pPortCfg->Group[i].PirIterationByByte;

 PirCreditMask &= ~(1<<i);

 if(pPortProc->Group[i].PirCurrentByByte > 0)

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

 {

 // Track every group with PIR credit for later

 PirCreditMask |= (1<<i);

 // Cap PIR credit at its max level

 if(pPortProc->Group[i].PirCurrentByByte > pPortCfg->Group[i].PirMaxByByte)

 pPortProc->Group[i].PirCurrentByByte = pPortCfg->Group[i].PirMaxByByte;

 }

 }

 }

#endif

 }

 /* Find out how much room is left in output queue */

 if (pPortCfg->DestThrottleThresh)

 {

 OutputSpaceAvail = pPortCfg->DestThrottleThresh;

 OutputSpaceAvail -= getQueueLength (pPortCfg->DestQueueNumber, pPortCfg->fByteDestThrottle);

 // No room in output queue */

 if (OutputSpaceAvail <= 0)

 {

 return;

 }

 }

 // Assume all groups have packets pending until we find out otherwise

 PacketPendingMask = 0xFFFFF;

 //

 // Schedule each logic group's CIR, while also ensuring that the

 // physical port's CIR is not violated.

 // If the physical port has no credit quit out of the scheduler entirely

 if (!isCreditAvail (pPortProc->CirCurrentByPkt, pPortProc->CirCurrentByByte,

 pPortCfg->fIsSupportPacketShaping, pPortCfg->fIsSupportByteShaping))

 return;

 // Foreground task can exit once all packets are sent either because

 // the input queues are empty, or we ran out of group CIR, or we run

 // out of port CIR.

 do

 {

 fPacketsSent = 0;

 for(i=0; i<pPortCfg->GroupCount; i++)

 {

#ifdef MULTIGROUP

 if (isCreditAvail (pPortProc->Group[i].CirCurrentByPkt, pPortProc-

>Group[i].CirCurrentByByte,

 pPortCfg->Group[i].fIsSupportPacketShaping, pPortCfg-

>Group[i].fIsSupportByteShaping))

#endif

 {

 // Attempt to schedule a packet

 BytesUsed = LogicalGroupScheduler(sched, pPortCfg, &pPortCfg->Group[i], &pPortProc-

>Group[i]);

 // If no packet scheduled, clear the pending mask

 if(!BytesUsed)

 {

 PacketPendingMask &= ~(1<<i);

 }

 else

 {

 uint32_t bytes = (uint32_t)BytesUsed & ~0x40000000;

 uint32_t bytesAdjusted = (bytes + pPortCfg->OverheadBytes - pPortCfg-

>RemoveBytes) << QMSS_QOS_SCHED_BYTES_SCALE_SHIFT;

 uint32_t packetsAdjusted = 1 << QMSS_QOS_SCHED_PACKETS_SCALE_SHIFT;

 if (pPortCfg->fIsSupportByteShaping)

 {

 pPortProc->CirCurrentByByte -= bytesAdjusted;

 }

#ifdef MULTIGROUP

 if (pPortCfg->Group[i].fIsSupportByteShaping)

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

 {

 pPortProc->Group[i].CirCurrentByByte -= bytesAdjusted;

 pPortProc->Group[i].PirCurrentByByte -= bytesAdjusted;

 }

#endif

 if (pPortCfg->fIsSupportPacketShaping)

 {

 pPortProc->CirCurrentByPkt -= packetsAdjusted;

 }

#ifdef MULTIGROUP

 if (pPortCfg->Group[i].fIsSupportPacketShaping)

 {

 pPortProc->Group[i].CirCurrentByPkt -= packetsAdjusted;

 pPortProc->Group[i].PirCurrentByPkt -= packetsAdjusted;

 }

#endif

 fPacketsSent = 1;

 // If the physical port has no credit quit out of the scheduler entirely

 if (!isCreditAvail (pPortProc->CirCurrentByPkt, pPortProc->CirCurrentByByte,

 pPortCfg->fIsSupportPacketShaping, pPortCfg-

>fIsSupportByteShaping))

 return;

 // See if we used up output space

 if (PhysPortUpdateOutputSpace (pPortCfg, &OutputSpaceAvail, bytes) == 0)

 {

 return;

 }

 }

#ifdef MULTIGROUP

 }

#endif

 }

 } while (fPacketsSent);

 //

 // Schedule each logic group's PIR in a WRR fashion while the

 // physical port's CIR is not violated.

 //

#ifdef MULTIGROUP

 do

 {

 // If there are no groups left with PIR group credit and packets, then we're done

 if(!(PirCreditMask & PacketPendingMask))

 return;

 // If all groups with WRR credit remaining are empty, add WRR credit

 while(! (PirCreditMask & pPortProc->WrrCreditMask & PacketPendingMask))

 {

 // Reset credits

 for(i=0; i<pPortCfg->GroupCount; i++)

 {

 pPortProc->Group[i].WrrCurrentCredit += pPortCfg->Group[i].WrrInitialCredit;

 if (pPortProc->Group[i].WrrCurrentCredit > (pPortCfg->Group[i].WrrInitialCredit <<

1))

 pPortProc->Group[i].WrrCurrentCredit = (pPortCfg->Group[i].WrrInitialCredit <<

1);

 if (pPortProc->Group[i].WrrCurrentCredit > 0 || (! pPortCfg-

>Group[i].WrrInitialCredit))

 pPortProc->WrrCreditMask |= (1<<i);

 }

 // while loop will always terminate because PirCreditMask & PacketPendingMask check

 }

 // If this group has PIR credit, WRR credit, and packets pending, then schedule a packet

 if((PirCreditMask & pPortProc->WrrCreditMask & PacketPendingMask) & (1<<pPortProc-

>NextGroup))

 {

 // Attempt to schedule a packet

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

 BytesUsed = LogicalGroupScheduler(sched, pPortCfg, &pPortCfg->Group[pPortProc-

>NextGroup], &pPortProc->Group[pPortProc->NextGroup]);

 // If no packet scheduled, clear the pending mask

 if(!BytesUsed)

 PacketPendingMask &= ~(1<<pPortProc->NextGroup);

 else

 {

 uint32_t bytes = (uint32_t)BytesUsed & ~0x40000000;

 uint32_t bytesAdjusted = (bytes + pPortCfg->OverheadBytes - pPortCfg->RemoveBytes);

 uint32_t packetsAdjusted = 1 << QMSS_QOS_SCHED_PACKETS_SCALE_SHIFT;

 // Use packet or byte count, depending on configuration

 if(pPortCfg->fByteWrrCredits)

 WrrCreditUsed = bytesAdjusted << QMSS_QOS_WRR_BYTES_SCALE_SHIFT;

 else

 WrrCreditUsed = 1 << QMSS_QOS_WRR_PACKETS_SCALE_SHIFT;

 // We also deduct the WRR credit

 pPortProc->Group[pPortProc->NextGroup].WrrCurrentCredit -= WrrCreditUsed;

 bytesAdjusted <<= QMSS_QOS_SCHED_BYTES_SCALE_SHIFT;

 // Deduct the PIR/CIR credit

 if (pPortCfg->fIsSupportPacketShaping)

 {

 pPortProc->CirCurrentByPkt -= packetsAdjusted;

 }

 if (pPortCfg->Group[pPortProc->NextGroup].fIsSupportPacketShaping)

 {

 pPortProc->Group[pPortProc->NextGroup].PirCurrentByPkt -= packetsAdjusted;

 }

 // Deduct the PIR/CIR credit

 if (pPortCfg->fIsSupportByteShaping)

 {

 pPortProc->CirCurrentByByte-= bytesAdjusted;

 }

 if (pPortCfg->Group[pPortProc->NextGroup].fIsSupportByteShaping)

 {

 pPortProc->Group[pPortProc->NextGroup].PirCurrentByByte -= bytesAdjusted;

 }

 // Clear the group's PIR credit mask if we depleted the PIR credit

 if (!isCreditAvail (pPortProc->Group[pPortProc->NextGroup].PirCurrentByPkt,

pPortProc->Group[pPortProc->NextGroup].PirCurrentByByte,

 pPortCfg->Group[pPortProc->NextGroup].fIsSupportPacketShaping,

pPortCfg->Group[pPortProc->NextGroup].fIsSupportByteShaping))

 PirCreditMask &= ~(1<<pPortProc->NextGroup);

 // Clear the group's WRR credit mask if we depleted the WRR credit

 if(pPortProc->Group[pPortProc->NextGroup].WrrCurrentCredit <= 0)

 pPortProc->WrrCreditMask &= ~(1<<pPortProc->NextGroup);

 // See if we used up output space

 if (PhysPortUpdateOutputSpace (pPortCfg, &OutputSpaceAvail, bytes) == 0)

 {

 return;

 }

 }

 }

 // Move on to the next group

 pPortProc->NextGroup++;

 if(pPortProc->NextGroup == pPortCfg->GroupCount)

 pPortProc->NextGroup = 0;

 } while (isCreditAvail (pPortProc->CirCurrentByPkt, pPortProc->CirCurrentByByte,

 pPortCfg->fIsSupportPacketShaping, pPortCfg->fIsSupportByteShaping));

#endif // MULTIGROUP

}

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

3.1.4 Group Scheduler Pseudocode

//

// This is the function that schedules a single packet from queues on a logical group

// The function returns the packet size of the packet selected

//

int32_t LogicalGroupScheduler(QOS_SCHED *sched, PHYS_PORT_CFG *pPortCfg, LOGICAL_GRP_CFG *pGroupCfg,

LOGICAL_GRP_PROC *pGroupProc)

{

 int32_t BytesUsed;

 int32_t packetSent = 0;

 uint8_t PacketPendingMask;

 int i, j;

 PollProxy();

 if (timerExpired()) // this costs 1 PDSP cycle if timer didn't expire

 {

 clearTimer();

 sched->TimerTicks++;

 }

 // With queues, we can directly read the pending status

 PacketPendingMask = ReadQosQueuePendingBits(pGroupCfg, pGroupProc);

 // If no packets, nothing to do

 if(!PacketPendingMask)

 return 0;

 //

 // Try to take a high priority queue first

 //

 for(i=0; i<pGroupCfg->SPCount; i++)

 {

 if(PacketPendingMask & (1<<i))

 return(QosQueueScheduler(pPortCfg, &pGroupProc->Queue[i]));

 }

 //

 // Next try to pick a round robin queue

 //

 if (PacketPendingMask & (((1 << pGroupCfg->RRCount) - 1) << pGroupCfg->SPCount))

 {

 // There are RR packets pending

 for(i=0; i<pGroupCfg->RRCount; i++)

 {

 // If all queues with WRR credit remaining are empty, reset the credit

 while (!(pGroupProc->WrrCreditMask & PacketPendingMask))

 {

 // Reset credits

 for(j=pGroupCfg->SPCount; j<(pGroupCfg->SPCount+pGroupCfg->RRCount); j++)

 {

 pGroupProc->Queue[j].WrrCurrentCredit += pGroupCfg->Queue[j].WrrInitialCredit;

 if (pGroupProc->Queue[j].WrrCurrentCredit > (pGroupCfg->Queue[j].WrrInitialCredit

<< 1))

 pGroupProc->Queue[j].WrrCurrentCredit = (pGroupCfg->Queue[j].WrrInitialCredit

<< 1);

 if (pGroupProc->Queue[j].WrrCurrentCredit > 0 || (! pGroupCfg-

>Queue[j].WrrInitialCredit))

 pGroupProc->WrrCreditMask |= (1<<j);

 }

 // While loop must terminate given

 // (PacketPendingMask & (((1 << pGroup->RRCount) - 1) << pGroup->SPCount)

 }

 // If the next queue has WRR credit and packets, then schedule a packet

 if((pGroupProc->WrrCreditMask & PacketPendingMask) & (1<<pGroupProc->NextQueue))

 {

 // Attempt to schedule a packet

 BytesUsed = QosQueueScheduler(pPortCfg, &pGroupProc->Queue[pGroupProc->NextQueue]);

 // If 0x40000000, will “fall off” in shift below

 // Deduct the WRR credit

 if(pPortCfg->fByteWrrCredits)

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

 pGroupProc->Queue[pGroupProc->NextQueue].WrrCurrentCredit -= (BytesUsed +

pPortCfg->OverheadBytes - pPortCfg->RemoveBytes) << QMSS_QOS_WRR_BYTES_SCALE_SHIFT;

 else

 pGroupProc->Queue[pGroupProc->NextQueue].WrrCurrentCredit -= 1 <<

QMSS_QOS_WRR_PACKETS_SCALE_SHIFT;

 // Clear the queues's WWR credit mask if we depleted the WRR credit

 if(pGroupProc->Queue[pGroupProc->NextQueue].WrrCurrentCredit <= 0)

 pGroupProc->WrrCreditMask &= ~(1<<pGroupProc->NextQueue);

 packetSent = 1;

 }

 // Move on to the next group

 pGroupProc->NextQueue++;

 if(pGroupProc->NextQueue == pGroupCfg->SPCount+pGroupCfg->RRCount)

 pGroupProc->NextQueue = pGroupCfg->SPCount;

 // Quit now if we moved a packet

 if(packetSent)

 return(BytesUsed);

 }

 }

 //

 // Finally, try to get a packet from the OPTIONAL best effort queues

 //

 for(i=pGroupCfg->SPCount+pGroupCfg->RRCount; i<pGroupCfg->QueueCount; i++)

 {

 if(PacketPendingMask & (1<<i))

 return(QosQueueScheduler(pPortCfg, &pGroupProc->Queue[i]));

 }

 // No packet was transferred

 return(0);

}

3.1.5 Queue Scheduler Pseudocode

//

// This is the function that moves a packet from the QOS queue to the egress

//

int32_t QosQueueScheduler(PHYS_PORT_CFG *pPortCfg, QOSQUEUE_PROC *pQueueProc)

{

 int32_t ByteSize;

 ByteSize = TransferPacket(pPortCfg->DestQueueNumber, pQueueProc->QueueNumber);

 if (ByteSize != -1)

 {

 pQueueProc->PacketsForwarded += 1;

 pQueueProc->BytesForwarded += ByteSize;

 return(ByteSize | 0x40000000);

 }

 return(0);

}

3.1.6 Drop Scheduler Pseudocode

// PDSP can do this in 1 cycle

uint32_t lmbd32 (uint32_t val, int bit)

{

 int i;

 for (i = 31; i >= 0; i--)

 {

 if (!((val >> i) ^ (bit & 1)))

 {

 return (uint32_t)i;

 }

 }

 return 32;

}

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

void DropSchedSnapQueue (

 uint16_t thisQueueNum,

 uint8_t *depth_p,

 uint16_t *depth_b32

)

{

 uint32_t bytes = QueueByteLength (thisQueueNum);

 uint32_t packets = QueuePacketCount (thisQueueNum);

 if (packets > 255)

 {

 packets = 255;

 }

 // Scaled such that 255 8K packets doesn't overflow

 bytes = ((bytes + 31) >> 5);

 if (bytes > 65535)

 {

 bytes = 65535;

 }

 If (depth_b32)

 {

 *depth_b32 = (uint16_t)bytes;

 }

 *depth_p = (uint8_t)packets;

}

// Snapshot input queue depth and assign to output profile

void DropSchedSnapInput (

 DROP_SCHED *dSched,

 uint8_t *depth_p,

 uint32_t *packets_present

)

{

 int bf;

 uint16_t queueBlockIdx = 0;

 // Read qpend bits for each of the queues

 for (bf = 0; bf < (NUM_DROP_INPUT_QUEUES+31)/32; bf++)

 {

 uint32_t pending = ReadQosQueuePendingBits(dSched->BaseQueue + queueBlockIdx);

 uint32_t lmbdval;

 if ((NUM_DROP_INPUT_QUEUES - queueBlockIdx) < 32)

 {

 // Ignore unintended queues

 PacketPendingMask &= (1 << (NUM_DROP_INPUT_QUEUES - queueBlockIdx + 1)) - 1;

 }

 packets_present[bf] = pending;

 while ((lmbdval = lmbd32(pending, 1)) < 32)

 {

 uint16_t thisQueueIdx = queueBlockIdx + lmbdval;

 uint16_t thisQueueNum = thisQueueIdx + dSched->BaseQueue;

 if (dSched->Queues[thisQueueIdx].fEnabled)

 {

 DropSchedSnapQueue (thisQueueNum, depth_p + thisQueueIdx, NULL);

 }

 pending &= ~(1 << lmbdval);

 }

 queueBlockIdx += 32;

 }

}

void DropSchedSnapOutput (

 DROP_SCHED *dSched,

 uint8_t *depth_p,

 uint16_t *depth_b32

)

{

 uint8_t thisOutProfIdx;

 for (thisOutProfIdx = 0; thisOutProfIdx < NUM_DROP_OUTPUT_PROFILES; thisOutProfIdx++)

 {

 if (dSched->OutProfiles[thisOutProfIdx].fEnabled)

 {

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

 uint16_t thisQueueNum = dSched->OutProfiles[thisOutProfIdx].DestQueueNumber;

 DropSchedSnapQueue (thisQueueNum, depth_p + thisOutProfIdx, depth_b32 + thisOutProfIdx);

 }

 }

}

// Discard disabled queues

void DropSchedDropDisabled (

 DROP_SCHED *dSched,

 uint32_t *packets_present

)

{

 int bf;

 uint16_t queueNum = dSched->BaseQueue;

 for (bf = 0; bf < (NUM_DROP_INPUT_QUEUES + 31) / 32; bf++)

 {

 uint32_t lmbdval;

 uint32_t pending = packets_present[bf];

 uint32_t enabled = dSched->queEnBits[bf];

 uint32_t disabled = ~enabled;

 uint32_t pendingAndDisabled = pending & disabled;

 uint32_t updatedPending = pending & ~pendingAndDisabled;

 packets_present[bf] = updatedPending;

 while ((lmbdval = lmbd32(pendingAndDisabled, 1)) < 32)

 {

 uint32_t thisQueueNum = queueNum + lmbdval;

 /* Drop without stats */

 while(DropPacket (thisQueueNum));

 pendingAndDisabled &= ~(1 << lmbdval);

 }

 queueNum += 32;

 }

}

// This is from http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps

uint32_t taus88 (uint32_t *seeds)

{

 uint32_t b;

 b = (((seeds[0] << 13) ^ seeds[0]) >> 19);

 seeds[0] = (((seeds[0] & 4294967294u) << 12) ^ b);

 b = (((seeds[1] << 2) ^ seeds[1]) >> 25);

 seeds[1] = (((seeds[1] & 4294967288u) << 4) ^ b);

 b = (((seeds[2] << 3) ^ seeds[2]) >> 11);

 seeds[2] = (((seeds[2] & 4294967280u) << 17) ^ b);

 return (seeds[0] ^ seeds[1] ^ seeds[2]);

}

// Return a draw between 0 and 1 in Q16

uint16_t Rand16 (DROP_SCHED *dSched)

{

 static uint32_t last_rand;

 static int pos = 0;

 uint16_t this_result;

 if (pos < 12)

 {

 last_rand = taus88 (&dSched->rng_s1);

 pos = 32;

 }

 this_result = (uint16_t)(last_rand << 4);

 last_rand >>= 8;

 pos -= 8;

 return this_result;

}

uint16_t mulProb (uint32_t dif, uint32_t recip, uint16_t prob)

{

 uint32_t lmbdval;

 uint32_t res32;

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

 uint32_t a,b;

 uint64_t res64;

 // Calculates

 // res32 = dif*recip

 // res64 = res32*prob

 // return res64 >> 32

 //

 if (dif > recip)

 {

 a = recip;

 b = dif;

 }

 else

 {

 a = dif;

 b = recip;

 }

 res32 = 0;

 while ((lmbdval = lmbd32 (a, 1)) != 32)

 {

 res32 += b << lmbdval;

 a &= ~ (1<<lmbdval);

 }

 res64 = 0;

 while ((lmbdval = lmbd32 (prob, 1)) != 32)

 {

 res64 += ((uint64_t)res32) << lmbdval;

 prob &= ~ (1<<lmbdval);

 }

 return (uint16_t)(res64 >> 32);

}

void DropSchedSched (

 DROP_SCHED *dSched,

 uint8_t *in_depth_p,

 uint8_t *out_depth_p,

 uint16_t *out_depth_b32,

 uint32_t *in_packets_present

)

{

 int que;

 int bf;

 uint16_t queueBlockIdx = 0;

 uint16_t dropProb[NUM_DROP_OUTPUT_PROFILES];

 uint8_t thisOutProfIdx;

 // Step through each pending bitfield and process all

 // queues with input packets

 for (bf = 0; bf < (NUM_DROP_INPUT_QUEUES + 31) / 32; bf++)

 {

 uint32_t lmbdval;

 uint32_t pending = in_packets_present[bf];

 int needInt = 0;

 while ((lmbdval = lmbd32(pending, 1)) < 32)

 {

 uint16_t thisQueueIdx = queueBlockIdx + lmbdval;

 uint16_t thisQueueNum = thisQueueIdx + dSched->BaseQueue;

 uint8_t thisStatsIdx = dSched->Queues[thisQueueIdx].StatsBlockIdx;

 uint8_t thisOutIdx = dSched->Queues[thisQueueIdx].OutProfIdx;

 uint8_t thisProfIdx = dSched->OutProfiles[thisOutIdx].CfgProfIdx;

 uint8_t fwdPkts;

 for (fwdPkts = in_depth_p[thisQueueIdx]; fwdPkts; fwdPkts--)

 {

 // Don't need to check enable since in_packets_present already

 // compensated for disabled queues

 bool dropPacket = 0;

 // Tail drop block

 if (dSched->CfgProfiles[thisProfIdx].TailThresh)

 {

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

 if (dSched->CfgProfiles[thisProfIdx].fByteTailThresh)

 {

 if ((out_depth_b32[thisOutIdx] << 5) >=

 dSched->CfgProfiles[thisProfIdx].TailThresh)

 {

 dropPacket = 1;

 }

 }

 else

 {

 if (out_depth_p[thisOutIdx] >=

 dSched->CfgProfiles[thisProfIdx].TailThresh)

 {

 dropPacket = 1;

 }

 }

 }

 // RED drop block

 if (!dropPacket && (dSched->CfgProfiles[thisProfIdx].Mode != DROP_MODE_TAIL_ONLY))

 {

 if (dropProb[thisOutIdx] == 0xffff)

 {

 dropPacket = 1;

 }

 else if (dropProb[thisOutIdx] == 0)

 {

 dropPacket = 0;

 }

 else

 {

 if (dropProb[thisOutIdx] <= Rand16(dSched))

 {

 dropPacket = 1;

 }

 else

 {

 dropPacket = 0;

 }

 }

 }

 // Execute drop block

 if (dropPacket)

 {

 // drop 1 packet and count it

 uint32_t bytes = DropPacket (thisQueueNum);

 dSched->StatsBlocks[thisStatsIdx].PacketsDropped ++;

 needInt |= dSched->StatsBlocks[thisStatsIdx].PacketsDropped >> 31;

 dSched->StatsBlocks[thisStatsIdx].BytesDropped += bytes;

 needInt |= dSched->StatsBlocks[thisStatsIdx].BytesDropped >> 31;

 }

 else

 {

 // Forward 1 packet and count it

 uint32_t bytes = TransferPacket(dSched->OutProfiles[thisOutIdx].DestQueueNumber,

thisQueueNum);

 dSched->StatsBlocks[thisStatsIdx].PacketsForwarded ++;

 needInt |= dSched->StatsBlocks[thisStatsIdx].PacketsForwarded >> 31;

 dSched->StatsBlocks[thisStatsIdx].BytesForwarded += bytes;

 needInt |= dSched->StatsBlocks[thisStatsIdx].BytesForwarded >> 31;

 // Update output queue depth so tail drop "sees it".

 out_depth_b32[thisQueueIdx] += (bytes + 31) >> 5;

 out_depth_p[thisQueueIdx] ++;

 }

 if (needInt)

 {

 GenInt (dSched, thisProfIdx);

 }

 }

 pending &= ~(1 << lmbdval);

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

 }

 queueBlockIdx += 32;

 }

 // Update averages every time, so 0's propegate and compute drop prob

 for (thisOutProfIdx = 0; thisOutProfIdx < NUM_DROP_OUTPUT_PROFILES; thisOutProfIdx++)

 {

 if (dSched->OutProfiles[thisOutProfIdx].fEnabled)

 {

 // Find new average, presuming all the packets are forwarded

 uint32_t QAvg = dSched->OutProfiles[thisOutProfIdx].QAvg;

 // bytes_pend = in / 2 + out;

 uint32_t bytes_pend = (out_depth_b32[thisOutProfIdx] << 5);

 uint16_t thisProb;

 uint8_t thisCfgProfIdx = dSched->OutProfiles[thisOutProfIdx].CfgProfIdx;

 DROP_CFG_PROFILE *cfg_p = &dSched->CfgProfiles[thisCfgProfIdx];

 DROP_OUTPUT_PROFILE *out_p = &dSched->OutProfiles[thisOutProfIdx];

 if (cfg_p->Mode != DROP_MODE_TAIL_ONLY)

 {

 QAvg += bytes_pend - (QAvg >> cfg_p->TC);

 dSched->OutProfiles[thisOutProfIdx].QAvg = QAvg;

 // Determine drop probability

 if (QAvg <= cfg_p->RedThreshLow)

 {

 thisProb = 0;

 }

 else if (QAvg < cfg_p->RedThreshHigh)

 {

 uint32_t threshDiff = (QAvg - cfg_p->RedThreshLow) >> cfg_p->TC;

 thisProb = mulProb (threshDiff, cfg_p->RedHighMLowRecip, out_p->RedProb);

 }

 else

 {

 thisProb = 0xffff;

 }

 dropProb[que] = thisProb;

 }

 }

 }

}

// Drop Scheduler Main

void DropScheduler (DROP_SCHED *dSched)

{

 uint8_t in_depth_p[NUM_DROP_INPUT_QUEUES]; // input packets

 uint32_t in_packets_present[(NUM_DROP_INPUT_QUEUES + 31)/32];

 uint8_t out_depth_p[NUM_DROP_OUTPUT_PROFILES];

 uint16_t out_depth_b32[NUM_DROP_OUTPUT_PROFILES];

 // Snapshot instantaneous queue depth of input queues.

 // If there are more than 255 packets, then only 255 are processed this tick

 DropSchedSnapInput (dSched, in_depth_p, in_packets_present);

 DropSchedSnapOutput (dSched, out_depth_p, out_depth_b32);

 DropSchedDropDisabled (dSched, in_packets_present);

 DropSchedSched (dSched, in_depth_p, out_depth_p, out_depth_b32, in_packets_present);

}

3.1.7 Background Task (Congestion) Pseudocode

//

// This is the background task that checks for queue congestion. Note that it is not

// run to completion, but constantly yields to the ForegroundTask() function.

//

{

 int32_t ByteSize;

 uint32_t i,j,k;

 PHYS_PORT_CFG *PortsCfg = sched->PortsCfg;

 PHYS_PORT_PROC *PortsProc = sched->PortsProc;

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

 // Do this forever

 while(1)

 {

 // Look at enabled Physical Ports

 for(i=0; i<sched->PortCount; i++)

 {

 if (PortsProc[i].fEnabled)

 {

 // Look at all groups within a port

 for(j=0; j<PortsCfg[i].GroupCount; j++)

 {

 // Look at all queues without a group

 for(k=0; k<PortsCfg[i].Group[j].QueueCount; k++)

 {

 if(PortsCfg[i].Group[j].Queue[k].CongestionThresh > 0)

 {

 while(getQueueLength (PortsProc[i].Group[j].Queue[k].QueueNumber,

PortsCfg[i].fByteCongest) >

 PortsCfg[i].Group[j].Queue[k].CongestionThresh)

 {

 ByteSize = DropPacket(PortsProc[i].Group[j].Queue[k].QueueNumber);

 PortsProc[i].Group[j].Queue[k].PacketsDropped += 1;

 PortsProc[i].Group[j].Queue[k].BytesDropped += ByteSize;

 PollProxy();

 if (timerExpired()) // this costs 1 PDSP cycle if timer didn't

expire

 {

 clearTimer();

 sched->TimerTicks++;

 ForegroundTask(sched);

 }

 }

 }

 }

 }

 }

 }

 PollProxy();

 if (timerExpired()) // this costs 1 PDSP cycle if timer didn't expire

 {

 clearTimer();

 sched->TimerTicks++;

 ForegroundTask(sched);

 }

 }

}

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

3.2 QoS Scheduler Shadow Configuration Specification

The QoS Scheduler is configured using messages defined in section 4, and a shadow configuration region as
defined below. They directly map to the physical port, group, and queue schedulers summarized in the
pseudocode data structure in section 3.1.1.

3.2.1 QoS Scheduler Queue

Each queue has a weighted round robin credit which is the weight used to schedule the WRR queues within
the group. This value is not used for strict priority and best effort queues. The congestion threshold is also
specified per queue and is used for all enabled queues.

Offset
Byte Field

Byte 3 Byte 2 Byte 1 Byte 0

0x0000 WRR Initial Credit (for queue in group)

0x0004 Congestion Threshold

3.2.1.1 QoS Queue Record Fields

Name Description

WRR Initial Credit

Each time all the WRR credits are consumed, they are redistributed using this
value. The units are bytes << 8, or packets << 17, depending on the value of
fWrrIsBytes in the unit flags of the port. This value is only used for queues
that are WRR queues within the group.

Congestion Threshold
When the background task detects more than this amount of bytes or packets
as specified by fCongIsBytes in the unit flags of the port, excess packets will
be dropped from head of queue. A value of 0 disabled congestion dropping.

3.2.2 QoS Scheduler Group (Bytes or Packets)

Each group has a CIR credit, a PIR credit as well as accumulated CIR/PIR maximums. A WRR credit is
specified to allow the groups to be scheduled in a WRR fashion within the port. Finally the breakdown of SP,
WRR, and BE queues is specified.

Offset
Byte Field

Byte 3 Byte 2 Byte 1 Byte 0

0x0000 CIR Iteration Credit

0x0004 PIR Iteration Credit

0x0008 Maximum accumulated CIR

0x000C Maximum accumulated PIR

0x0010 WRR Initial Credit (for group in port)

0x0014 Reserved WRR Queue Cnt SP Queue Cnt Total Queue Cnt

3.2.2.1 QOS Queue Record Fields

Name Description

CIR Iteration Credit

Committed Information Rate credit granted to the group for each timer
interval. The units are either packets << 20, or bytes << 11, as specified by
fCirIsBytes in the unit flags of the port. This value isn’t used on the lite ports
defined together with the drop scheduler.

PIR Iteration Credit

Peak Information Rate credit granted to the group for each timer interval. The
units are either packets << 20, or bytes << 11, as specified by fCirIsBytes in
the unit flags of the port. This value isn’t used on the lite ports defined
together with the drop scheduler.

Maximum accumulated
CIR

Limit on CIR credit for the group in the same units as CIR Iteration Credit.
This value isn’t used on the lite ports defined together with the drop
scheduler.

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

Maximum accumulated
PIR

Limit on PIR credit for the group in the same units as PIR Iteration Credit.
This value isn’t used on the lite ports defined together with the drop
scheduler.

WRR Initial Credit

Each time all the group WRR credits within a port are consumed, they are
redistributed using this value. The units are bytes << 8, or packets << 17,
depending on the value of as fWrrIsBytes in the unit flags of the port. This
value is only used for queues that are WRR queues within the group. This
value isn’t used on the lite ports defined together with the drop scheduler.

WRR Queue Cnt Number of WRR queues in the group. These are the “middle” queues.

SP Queue Cnt Number of SP queues in the group. These are the first queues.

Total Queue Cnt
Total number of queues. BE queues = Total Queue Cnt – WRR Queue Cnt –
SP Queue Cnt

3.2.3 QoS Scheduler Group (Bytes And Packets)

This format is used for build that supports simultaneous bytes and packets (build containing 2 full ports an 10
lite ports)

Offset
Byte Field

Byte 3 Byte 2 Byte 1 Byte 0

0x0000 CIR Iteration Credit (bytes)

0x0004 PIR Iteration Credit (bytes)

0x0008 Maximum accumulated CIR (bytes)

0x000C Maximum accumulated PIR (bytes)

0x0010 WRR Initial Credit (for group in port)

0x0014 Flags WRR Queue Cnt SP Queue Cnt Total Queue Cnt

0x0018 CIR Iteration Credit (packets)

0x001c PIR Iteration Credit (packets)

0x0020 Maximum accumulated CIR (packets)

0x0024 Maximum accumulated PIR (packets)

3.2.3.1 QOS Queue Record Fields

Name Description

CIR Iteration Credit
(bytes)

Committed Information Rate credit granted to the group for each timer
interval. The units are bytes << 11. Value is used when flags & 0x20 is set.

PIR Iteration Credit
(bytes)

Peak Information Rate credit granted to the group for each timer interval. The
units bytes << 11. Value is used when flags & 0x20 is set.

Maximum accumulated
CIR (bytes)

Limit on CIR credit for the group in the same units as CIR Iteration Credit.
Value is used when flags & 0x20 is set.

Maximum accumulated
PIR (bytes)

Limit on PIR credit for the group in the same units as PIR Iteration Credit.
Value is used when flags & 0x20 is set.

WRR Initial Credit

Each time all the group WRR credits within a port are consumed, they are
redistributed using this value. The units are bytes << 8, or packets << 17,
depending on the value of as fWrrIsBytes in the unit flags of the port. This
value is only used for queues that are WRR queues within the group.

Flags

0x80: Inherited (sw use in LLD to retain inherited config). Does not affect fw
operation; bytes and packets are always selected with 0x40 and 0x20.
0x40: Schedule by packets
0x20: Schedule by bytes

WRR Queue Cnt Number of WRR queues in the group. These are the “middle” queues.

SP Queue Cnt Number of SP queues in the group. These are the first queues.

Total Queue Cnt
Total number of queues. BE queues = Total Queue Cnt – WRR Queue Cnt –
SP Queue Cnt

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

CIR Iteration Credit
(packets)

Committed Information Rate credit granted to the group for each timer
interval. The units are packets << 20. Value is used when flags & 0x40 is
set.

PIR Iteration Credit
(packets)

Peak Information Rate credit granted to the group for each timer interval. The
units are packets << 20. Value is used when flags & 0x40 is set.

Maximum accumulated
CIR (packets)

Limit on CIR credit for the group in the same units as CIR Iteration Credit.
Value is used when flags & 0x40 is set.

Maximum accumulated
PIR (packets)

Limit on PIR credit for the group in the same units as PIR Iteration Credit.
Value is used when flags & 0x40 is set.

3.2.4 QoS Scheduler Physical Port (Bytes Or Packets)

Each physical port enables configuration of a port CIR, its egress queue, and specifies the units of all the
credit parameters for the port, group, and queues.

Offset
Byte Field

Byte 3 Byte 2 Byte 1 Byte 0

0x0000 Egress Queue Number Group Count Unit Flags

0x0004 Output Throttle Threshold Reserved Overhead Bytes

0x0008 CIR Iteration Credit

0x000C Maximum Accumulated CIR

3.2.4.1 QOS Queue Record Fields

Name Description

Egress Queue Number

Queue Manager and Queue Number for output queue. This can be any
queue supported by the QMSS, whether it is serviced by hardware, host
software, or firmware.

When chaining output queues to other input queues processed by same QoS
PDSP, it is suggested to chain to ascending port numbers. Since ports are
processed in ascending order, this reduces unnecessary latency compared to
linking to lower numbered ports.

Group Count
Number of groups in use on this port (1-5 for full ports, must be 1 on a lite
port)

Unit Flags

0x0001: fWrrIsBytes - WRR credits are specified in bytes
0x0002: fCirIsBytes - CIR credits are specified in bytes
0x0004: fCongIsBytes - Congestion Threshold is specified in bytes
0x0008: fByteDestThrottleBytes – Output throttle is specified in bytes
0x0010: fIsJoint – combine even/odd lite ports into joint port,
Even port is configured where its group WRR Queue Cnt, SP Queue Cnt, and
Total queue count are set for both ports. For example, for 2SP, 4WRR, and
2BE queues, these would be set to (4, 2, 8). On the odd port, which must be
disabled with fIsJointSet, the queue cnts would be set to (2, 0, 4) indicating
the portion of queues serviced by the second port. The queues are
configured with the first 4 set through the even port, and the last 4 set through
the odd port. Statistics are all queried through the even port (for all 8
queues).

This is a bit field where 0 or more of the 3 bits can be set.

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

Output Throttle
Threshold

Limit on pending packets in output queue. Once output queue contains this
many packets/bytes, no further packets will be forwarded this iteration. This
is intended to be used with hierarchical configurations, where only the
outermost level should drop. By limiting packets in inner levels, it makes the
entire backlog visible to the outer (drop) unit.

In order to allow “single path” max rate through the next scheduling block, this
throttle should be set to at least the number of bytes that can be scheduled
per tick in that block. For example, if QoS runs at 50us, and the next port can
forward 100mbit, then this should be set to 5000 bits.

Overhead Bytes

Number of bytes to add to each packet before charging cir/pir. This
represents bytes not included in the QMSS C register, such as Ethernet
headers and trailers. For example, a common value is 24. These bytes are
NOT included in statistics, but are only deducted from credits.

CIR Iteration Credit
Committed Information Rate credit granted to the group for each timer
interval. The units are either packets << 20, or bytes << 11, as specified by
fCirIsBytes in the unit flags of the port.

Maximum accumulated
CIR

Limit on CIR credit for the group in the same units as CIR Iteration Credit.

3.2.5 QoS Scheduler Physical Port (Bytes And Packets)

Each physical port enables configuration of a port CIR, its egress queue, and specifies the units of all the
credit parameters for the port, group, and queues.

This is only used with build that supports bytes and packets at the same time.

Offset
Byte Field

Byte 3 Byte 2 Byte 1 Byte 0

0x0000 Egress Queue Number Group Count Unit Flags

0x0004 Output Throttle Threshold Reserved Overhead Bytes

0x0008 CIR Iteration Credit (bytes)

0x000C Maximum Accumulated CIR (bytes)

0x0010 CIR Iteration Credit (packets)

0x0014 Maximum Accumulated CIR (packets)

3.2.5.1 QOS Queue Record Fields

Name Description

Egress Queue Number

Queue Manager and Queue Number for output queue. This can be any
queue supported by the QMSS, whether it is serviced by hardware, host
software, or firmware.

When chaining output queues to other input queues processed by same QoS
PDSP, it is suggested to chain to ascending port numbers. Since ports are
processed in ascending order, this reduces unnecessary latency compared to
linking to lower numbered ports.

Group Count
Number of groups in use on this port (1-5 for full ports, must be 1 on a lite
port)

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

Unit Flags

0x0001: fWrrIsBytes - WRR credits are specified in bytes
0x0002: fCirByBytes – Scheduling using byte credits enabled
0x0004: fCongIsBytes - Congestion Threshold is specified in bytes
0x0008: fByteDestThrottleBytes – Output throttle is specified in bytes
0x0010: fIsJoint – combine even/odd lite ports into joint port,
0x0020: fCirByPackets – Scheduling using packet credits enabled.

Even port is configured where its group WRR Queue Cnt, SP Queue Cnt, and
Total queue count are set for both ports. For example, for 2SP, 4WRR, and
2BE queues, these would be set to (4, 2, 8). On the odd port, which must be
disabled with fIsJointSet, the queue cnts would be set to (2, 0, 4) indicating
the portion of queues serviced by the second port. The queues are
configured with the first 4 set through the even port, and the last 4 set through
the odd port. Statistics are all queried through the even port (for all 8
queues).

This is a bit field where 0 or more of the 3 bits can be set.

Output Throttle
Threshold

Limit on pending packets in output queue. Once output queue contains this
many packets/bytes, no further packets will be forwarded this iteration. This
is intended to be used with hierarchical configurations, where only the
outermost level should drop. By limiting packets in inner levels, it makes the
entire backlog visible to the outer (drop) unit.

In order to allow “single path” max rate through the next scheduling block, this
throttle should be set to at least the number of bytes that can be scheduled
per tick in that block. For example, if QoS runs at 50us, and the next port can
forward 100mbit, then this should be set to 5000 bits.

Overhead Bytes

Number of bytes to add to each packet before charging cir/pir. This
represents bytes not included in the QMSS C register, such as Ethernet
headers and trailers. For example, a common value is 24. These bytes are
NOT included in statistics, but are only deducted from credits.

CIR Iteration Credit
(bytes)

Committed Information Rate credit granted to the group for each timer
interval. The units are bytes << 11. This field is used if UnitFlags.fCirByBytes
is set.

Maximum accumulated
CIR (bytes)

Limit on CIR credit for the group in the same units as CIR Iteration Credit.
This field is used if UnitFlags.fCirByBytes is set.

CIR Iteration Credit
(bytes)

Committed Information Rate credit granted to the group for each timer
interval. The units are packets << 20. This field is used if
UnitFlags.fCirByPackets is set.

Maximum accumulated
CIR (bytes)

Limit on CIR credit for the group in the same units as CIR Iteration Credit.
This field is used if UnitFlags.fCirByBytes is set.

3.2.6 Complete Shadow Configuration Spec (QoS Scheduler Full/Lite Ports
supporting Bytes or Packets)

This table shows the relationship between the port, group, and queue configuration structures to their
placement in the memory map shown in “complete shadow configuration area” of section 4.2.1. The same
structure format is used for both full and lite ports except that the limit for the number of groups and number of
each type of queue is lower on a lite port.

Offset Size Structure Definition

0x0000 0x0010 Physical Port Configuration (section 3.2.4)

0x0010 0x0018 Group 0 Configuration (section 3.2.2)

0x0028 0x0008 Group 0, Queue 0 Configuration (section 3.2.1)

0x0030 0x0008 Group 0, Queue 1 Configuration (section 3.2.1)

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

0x0038 0x0008 Group 0, Queue 2 Configuration (section 3.2.1)

0x0040 0x0008 Group 0, Queue 3 Configuration (section 3.2.1)

0x0048 0x0008 Group 0, Queue 4 Configuration (section 3.2.1)

0x0050 0x0008 Group 0, Queue 5 Configuration (section 3.2.1)

0x0058 0x0008 Group 0, Queue 6 Configuration (section 3.2.1)

0x0060 0x0008 Group 0, Queue 7 Configuration (section 3.2.1)

0x0068 0x0018 Group 1 Configuration (section 3.2.2)

0x0080 0x0040 Group 1, 8 Queue Configurations (section 3.2.1)

0x00C0 0x0018 Group 2 Configuration (section 3.2.2)

0x00D8 0x0040 Group 2, 8 Queue Configurations (section 3.2.1)

0x0118 0x0018 Group 3 Configuration (section 3.2.2)

0x0130 0x0040 Group 3, 8 Queue Configurations (section 3.2.1)

0x0170 0x0018 Group 4 Configuration (section 3.2.2)

0x0188 0x0040 Group 4, 8 Queue Configurations (section 3.2.1)

3.2.7 Complete Shadow Configuration Spec (QoS Scheduler Full/Lite Ports
supporting Bytes And Packets)

This table shows the relationship between the port, group, and queue configuration structures to their
placement in the memory map shown in “complete shadow configuration area” of section 4.2.1. The same
structure format is used for both full and lite ports except that the limit for the number of groups and number of
each type of queue is lower on a lite port.

Offset Size Structure Definition

0x0000 0x0018 Physical Port Configuration (section 3.2.5

0x0018 0x0028 Group 0 Configuration (section 3.2.2)

0x0040 0x0008 Group 0, Queue 0 Configuration (section 3.2.1)

0x0048 0x0008 Group 0, Queue 1 Configuration (section 3.2.1)

0x0050 0x0008 Group 0, Queue 2 Configuration (section 3.2.1)

0x0058 0x0008 Group 0, Queue 3 Configuration (section 3.2.1)

0x0060 0x0008 Group 0, Queue 4 Configuration (section 3.2.1)

0x0068 0x0008 Group 0, Queue 5 Configuration (section 3.2.1)

0x0070 0x0008 Group 0, Queue 6 Configuration (section 3.2.1)

0x0078 0x0008 Group 0, Queue 7 Configuration (section 3.2.1)

0x0080 0x0028 Group 1 Configuration (section 3.2.2)

0x00A8 0x0040 Group 1, 8 Queue Configurations (section 3.2.1)

0x00E8 0x0028 Group 2 Configuration (section 3.2.2)

0x0110 0x0040 Group 2, 8 Queue Configurations (section 3.2.1)

0x0150 0x0028 Group 3 Configuration (section 3.2.2)

0x0178 0x0040 Group 3, 8 Queue Configurations (section 3.2.1)

0x01B8 0x0028 Group 4 Configuration (section 3.2.2)

0x01E0 0x0040 Group 4, 8 Queue Configurations (section 3.2.1)

3.2.8 Drop Scheduler Queue Configuration

The shadow area can simultaneously configure all 80 drop scheduler input queues as follows.

Offset
Byte Field

Byte 3 Byte 2 Byte 1 Byte 0

0x0000 valid
Stats Push profile

index queue 0

Statistics Block
Index

[0,47] for input

Output Profile Index
[0-35] for input

queue 0

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

queue 0

0x0004 valid
Stats Push profile

index queue 0

Statistics Block
Index

[0,47] for input
queue 0

Output Profile Index
[0-35] for input

queue 0

0x013C valid
Stats Push profile

index queue 0

Statistics Block
Index

[0,47] for input
queue 79

Output Profile Index
[0-35] for input

queue 79

3.2.8.1 Drop Scheduler Queue Configuration Fields

There are sufficient rows in the table to simultaneously configure all 80 queues.

Name Description

Valid
0: profile is invalid/queue is disabled
1: profile is valid/queue is enabled

Stats Push profile index

0: no push stats for this queue
1-4: use stats push profile pair 0-3 from 3.2.10.1. Whenever the MSB of a
stat associated with a packet on this queue becomes set, the queue pair will
be used to push the stats to host software before they would overflow. The
stats internally auto-reset to 0 atomically with the push stats.

Statistics Block Index

0-47: Statistics Block to use for packets forwarded/dropped from this queue

The QoS Drop Scheduler supports 48 distinct sets of statistics.

Output Profile Index

0-35:Output Profile

The Output Profile specifies the output queue. It also tracks the average of
each input+output queue pair. Some implementations call this a “CoS” (class
of service).

3.2.9 Drop Scheduler Config Profile Configuration in Shadow

While the drop scheduler supports 80 input queues, they are mapped into CoS (class of service) profiles.
Each class of service supports a profile that configures the thresholds and drop probability as well as the
egress queue.

Offset
Byte Field

Byte 3 Byte 2 Byte 1 Byte 0

0x0000 Reserved Time Constant Mode Unit Flags

0x0004 Tail Drop Threshold

0x0008 RED low threshold

0x000C RED high threshold

0x0010 Thresh Recip

3.2.9.1 Drop Scheduler Config Profile Fields

Name Description

Time Constant
Time constant used for computing average queue depth. This is expressed
as a 2^-(TimeConstant) value. For example for 1/512, use 9.

Mode
0x0000: tail drop only
0x0001: Random Early Drop enabled
0x0002: Random Early Mark enabled

Unit Flags
0x0001: fTailThreshBytes : Tail drop thresholds are in bytes
 [red thresholds are always bytes]

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

Tail Drop Threshold
Tail Drop Threshold in fTailThreshBytes units. This is used with
instantaneous queue depth. A value of 0 disables tail drop.

RED low threshold
If average depth below this threshold, then no packets are marked/dropped
(in fRedThreshBytes units)

RED high threshold
If average depth above this threshold, then all packets are marked/dropped
(in fRedThreshBytes units)

Thresh Recip In Q32, 1/((red high thresh – red low thresh) << time constant)

3.2.10 Drop Scheduler Top Level Config in Shadow

The top level configuration for the drop scheduler configures parameters that apply to all of drop scheduler
(as well as timer relationship to QoS scheduler)

Offset
Byte Field

Byte 3 Byte 2 Byte 1 Byte 0

0x0000

Reserved

0x0004 Random Seed 1

0x0008 Random Seed 2

0x000C Random Seed 3

0x0010 Push Stats Source Queue 1 Push Stats Destination Queue 1

0x0014 Push Stats Source Queue 2 Push Stats Destination Queue 2

0x0018 Push Stats Source Queue 3 Push Stats Destination Queue 3

0x001C Push Stats Source Queue 4 Push Stats Destination Queue 4

3.2.10.1 Drop Scheduler Top Level Config Fields

Name Description

Random Seed 1

Used to seed random number generator used to drop/mark packets.
Normally this is a don’t care. 0 on write means don’t change (0 is an illegal
configuration for a Tausworthe). Default is 0xfee1. This value will change
(representing s1) as RNG runs.

Random Seed 2

Used to seed random number generator used to drop/mark packets.
Normally this is a don’t care. 0 on write means don’t change (0 is an illegal
configuration for a Tausworthe). Default is 0xdead. This value will change
(representing s2) as RNG runs.

Random Seed 3

Used to seed random number generator used to drop/mark packets.
Normally this is a don’t care. 0 on write means don’t change (0 is an illegal
configuration for a Tausworthe). Default is 0xbeef. This value will change
(representing s3) as RNG runs.

Push Stats Source
Queue N

Queue number to pop a descriptor (32 byte or larger) that will be used to
store stats. Stats are directly placed in descriptor, then it is pushed into Push
Stats Destination Queue N

Push Stats Destination
Queue N

Queue number to send filled stats descriptors to SW.

3.2.11 Drop Scheduler Output Profile Config in Shadow

There are 36 output profiles in the drop scheduler. Each profile specifies an output queue number and tracks
the average queue depth between the input and output queues.

Offset Byte Field

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

Byte 3 Byte 2 Byte 1 Byte 0

0x0000 RED drop probability Output Queue Number

0x0004 Reserved Enabled Config Profile Index

0x0008 Average Queue Depth

3.2.11.1 Drop Scheduler Output Profile Fields

Name Description

RED drop probability

Fraction of packets that will be dropped in Q16 units. For example, a value of
0x8000 would set drop probability to 0.5, and 0x51F will set it to 0.02. This is
the drop probability when the average queue depth is equal to the RED high
threshold.

Output Queue Number

Queue Manager and Queue Number for output queue. This can be any
queue supported by the QMSS, whether it is serviced by hardware, host
software, or firmware.

When chaining output queues to other input queues processed by same QoS
PDSP, it is suggested to chain to ascending port numbers. Since ports are
processed in ascending order, this reduces unnecessary latency compared to
linking to lower numbered ports.

Enabled
0: profile is disabled/not valid
1: profile is enabled/valid

Config Profile Index Index to threshold defined in section 3.2.9.

Average Queue Depth

Average queue depth, measured over time constant TC. The binary point is
at the location configured by scaling factor TC. TC is located in the config
profile (see 3.2.9). This can be read for statistics purposes or to compute
new RED drop probability if it is too big/small. Value on write isn’t used.

3.2.12 Dedicated Query Statistics Shadow Area

The statistics are queried via a message. This ensures they are atomically queried and reset (if the host
software were to directly read and reset the stats, packets could be processed between the reads/writes,
leading to inconsistent stats). After the message is issued the stats will be in the statistics shadow area in the
following format.

Both QoS scheduler and Drop Scheduler can use the Query Statistics. However, the drop scheduler will not
report any MSW statistics. Rollover of the Drop Scheduler statistics is handled via Push Statistics (section
3.2.14)

When group statistics are queried by setting queue number to 0xff this area is not used.

Offset
Byte Field

Byte 3 Byte 2 Byte 1 Byte 0

0x0000 Bytes Forwarded LSW

0x0004 Bytes Forwarded MSW

0x0008 Bytes Discarded LSW

0x000C Bytes Discarded MSW

0x0010 Packets Forwarded

0x0014 Packets Discarded

3.2.12.1 Query Statistics Shadow Record Fields

Name Description

Bytes Forwarded LSW
Bytes forwarded least significant word. Must read LSW and MSW with two
separate 32 bit reads, do not issue 64 bit read.

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

Bytes Forwarded MSW

Bytes forwarded most significant word. Must read LSW and MSW with two
separate 32 bit reads, do not issue 64 bit read.

Not used for Drop Scheduler statistics (always 0).

Bytes Discarded LSW
Bytes discarded least significant word. Must read LSW and MSW with two
separate 32 bit reads, do not issue 64 bit read. This only includes packets
which were discarded due to the congestion dropping, not due to port disable.

Bytes Discarded MSW

Bytes discarded most significant word. Must read LSW and MSW with two
separate 32 bit reads, do not issue 64 bit read. This only includes packets
which were discarded due to the congestion dropping, not due to port disable.

Not used for Drop Scheduler statistics (always 0).

Packets Forwarded Number of packets forwarded to the egress queue.

Packets Discarded
Number of packets discarded. This only includes packets which were
discarded due to the congestion dropping, not due to port disable.

Average Queue Depth

3.2.13 Group Statistics in Common Shadow Area

This is format of stats for entire group when queried with queue=0xff.

Offset
Byte Field

Byte 3 Byte 2 Byte 1 Byte 0

0x0000 Reserved # Of Queues

0x0004 Queue 0 Bytes Forwarded LSW

0x0008 Queue 0 Bytes Forwarded MSW

0x000C Queue 0 Bytes Discarded LSW

0x0010 Queue 0 Bytes Discarded MSW

0x0014 Queue 0 Packets Forwarded

0x0018 Queue 0 Packets Discarded

0x001c Queue 1 Bytes Forwarded LSW

0x0020 Queue 1 Bytes Forwarded MSW

0x0024 Queue 1 Bytes Discarded LSW

0x0028 Queue 1 Bytes Discarded MSW

0x002c Queue 1 Packets Forwarded

0x0030 Queue 1 Packets Discarded

0x0034 Queue 2 Bytes Forwarded LSW

0x0038 Queue 2 Bytes Forwarded MSW

0x003c Queue 2 Bytes Discarded LSW

0x0040 Queue 2 Bytes Discarded MSW

0x0044 Queue 2 Packets Forwarded

0x0048 Queue 2 Packets Discarded

0x004c Queue 3 Bytes Forwarded LSW

0x0050 Queue 3 Bytes Forwarded MSW

0x0054 Queue 3 Bytes Discarded LSW

0x0058 Queue 3 Bytes Discarded MSW

0x005c Queue 3 Packets Forwarded

0x0060 Queue 3 Packets Discarded

0x0064 Queue 4 Bytes Forwarded LSW

0x0068 Queue 4 Bytes Forwarded MSW

0x006c Queue 4 Bytes Discarded LSW

0x0070 Queue 4 Bytes Discarded MSW

0x0074 Queue 4 Packets Forwarded

0x0078 Queue 4 Packets Discarded

0x007c Queue 5 Bytes Forwarded LSW

0x0080 Queue 5 Bytes Forwarded MSW

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

0x0084 Queue 5 Bytes Discarded LSW

0x0088 Queue 5 Bytes Discarded MSW

0x008c Queue 5 Packets Forwarded

0x0090 Queue 5 Packets Discarded

0x0094 Queue 6 Bytes Forwarded LSW

0x0098 Queue 6 Bytes Forwarded MSW

0x009c Queue 6 Bytes Discarded LSW

0x00a0 Queue 6 Bytes Discarded MSW

0x00a4 Queue 6 Packets Forwarded

0x00a8 Queue 6 Packets Discarded

0x00ac Queue 7 Bytes Forwarded LSW

0x00b0 Queue 7 Bytes Forwarded MSW

0x00b4 Queue 7 Bytes Discarded LSW

0x00b8 Queue 7 Bytes Discarded MSW

0x00bc Queue 7 Packets Forwarded

0x00c0 Queue 7 Packets Discarded

3.2.14 Push Statistics

The Drop Scheduler requires the use of Push Statistics. Push Statistics work as follows: if the MSB of one of
the statistics becomes set, the firmware will push out the statistics using the Push Stats Destination Queue N
in 3.2.11. This section documents the format of those statistics within the descriptor.

Since each of the stats is 32 bits the MSB gets set after either 2G packets or 2Gbytes flow through the queue.
At gigabit rate, it takes about 20 minutes for the packet counters to reach this point using minimum size
packets (2G/1.5Mpps). It takes about (2G/100MBs) 20 seconds for the byte counters to set the MSB. Once
the MSB is set, there is another 20 minutes/ 20 seconds before the counter would roll over. This gives plenty
of time for the host to service all the interrupts for 80 queues.

The internal statistics are auto reset when they are copied to the push stats shadow area.

Offset
Byte Field

Byte 3 Byte 2 Byte 1 Byte 0

0x0000 Reserved Reserved Size Block Number

0x0000 Bytes Forwarded

0x0004 Bytes Discarded

0x0008 Packets Forwarded

0x000C Packets Discarded

3.2.14.1 Push Statistics Descriptor Fields

Name Description

Size Size of stats descriptor (actually used). This should be 20.

Block Number Statistic Block number for associated stats.

Bytes Forwarded Bytes forwarded.

Bytes Discarded
Bytes discarded or marked for discard eligible. This only includes packets
which were discarded due to the congestion dropping, not due to port disable.

Packets Forwarded Number of packets forwarded to the egress queue.

Packets Discarded
Number of packets discarded. This only includes packets which were
discarded due to the congestion dropping, not due to port disable.

3.2.15 Push Proxy

This feature is only implemented together with drop scheduler. The QoS scheduler only build doesn’t support
this feature. The requests will be forwarded in less than 5us and have an overall throughput >=250K pushes
per second.
The host code should use the following pseudocode to do a push:

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

void proxy_push(uint32_t queue, void *ptr, uint32_t size);

{

 lock(); // (stop other cores and threads

 while (*desc_ptr);

 *desc_ptr = ptr;

 queueNum_size = (queue << 16) | size;

 unlock(); // other cores/threads are OK now, they will spin until this push done

}

Offset
Byte Field

Byte 3 Byte 2 Byte 1 Byte 0

0x0000 queueNum size

0x0004 desc_ptr

3.2.15.1 Push Statistics Descriptor Fields

Name Description

queueNum
Queue number (0-8191) that proxy will push to (must write atomically with
size)

size
Size of packet (to be written to queue’s C register) (must write atomically with
queueNum)

desc_ptr Pointer to write to queue’s D register. Hint bits can be encoded as needed.

3.2.16 Input Queue Map for QoS Scheduler

The base queue is set with message defined in section 4.1.3.2. The functions of each queue are listed below.

3.2.16.1 Drop Scheduler not present

Queue Description

0-39 Full port 0

40-79 Full port 1

80-83 Lite port 2

84-87 Lite port 3

88-91 Lite port 4

92-95 Lite port 5

96-99 Lite port 6

100-103 Lite port 7

104-107 Lite port 8

108-111 Lite port 9

112-115 Lite port 10

116-119 Lite port 11

3.2.16.2 Wide Port (Drop Scheduler not present)

Queue Description

0-135 Full port 0

3.2.16.3 If the Drop Scheduler is present

Queue Description

0-3 Lite Port 0

4-7 Lite port 1

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

3.2.17 Input Queue Map for Drop Scheduler

The base queue is set with message defined in section 4.1.3.2. The functions of each queue are listed below.

Queue Description

0-63 “DSCP” queues

64-72 “PRI” queues

73-80 Linux Queues

8-11 Lite port 2

12-15 Lite port 3

16-19 Lite port 4

20-23 Lite port 5

24-27 Lite port 6

28-31 Lite port 7

32-35 Lite port 8

36-39 Lite port 9

40-43 Lite port 10

44-47 Lite port 11

48-51 Lite port 12

52-55 Lite port 13

56-59 Lite port 14

60-63 Lite port 15

64-67 Lite port 16

68-71 Lite port 17

72-75 Lite port 18

76-79 Lite port 19

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

4. Firmware Command Interface

4.1 Firmware Command Handshake

4.1.1 Command Handshake

The process of writing a command is to check to see if the command buffer is free, then write the command
parameters, and finally write the command. Optionally, the caller can wait for command completion.

The command buffer is free when the “command” field of the first work in the command buffer is set to 0x00.

When a command is written, the host CPU must write the word containing the command byte *last*. The
command buffer is in internal RAM and should not be marked as cacheable by the host CPU. If the RAM is
cached on the host CPU, then the host must perform two separate writes and cache flushes; the first for
writing the parameters, and then a second independent write and cache flush for writing the command word.
All writes should be performed as 32 bit quantities.

Note that the first word of the command buffer appears in a noncontiguous memory region as the remaining
fields in the buffer.

After the command is written, the PDSP will clear the “command” field upon command completion. The
command results can then be read from the Return Code field.

4.1.2 Command Buffer

The session router is programmed using a shared memory command buffer. The command buffer consists of
a command word, followed by several parameters. The format of the buffer is as follows:

Command
Buffer Address

Field

Byte 3 Byte 2 Byte 1 Byte 0
0x000B:C000 Index Option Command
0x000B:C004 Return Code

The following is the breakdown of each field:

Field
Byte

Width
Notes

Command 1 QOS Command

Option 1 Command Option

Index 2 Command Index

Return Code 4

Used to return status to the caller:
QOSSCHED_CMD_RETCODE_SUCCESS 0x01
QOSSCHED_CMD_RETCODE_INVALID_COMMAND 0x02
QOSSCHED_CMD_RETCODE_INVALID_INDEX 0x03
QOSSCHED_CMD_RETCODE_INVALID_OPTION 0x04

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

4.1.3 QoS Scheduler Queue Region Base

Egress queues can be located anywhere in the system, but the QOS ingress queues are restricted to a set of
140 starting at a fixed base (which is a multiple of 32). Having a fixed base is not an issue since QOS queues
must be allocated out of a general use pool in any case.

4.1.3.1 QOSSCHED_CMD_GET_QUEUE_BASE

The QOSSCHED_CMD_GET_QUEUE_BASE command is used to read the queue number index of the base
queue of the QoS scheduler or the Drop Scheduler.

Calling Parameters:

Command QOSSCHED_CMD_GET_QUEUE_BASE (0x80)

Option
0: Get base queue of the QoS Scheduler (120 if drop scheduler not
present, 80 if drop scheduler is present queues)
1: Get base queue of the Drop Scheduler (80 queues)

Index Not used

Returns:

Index Queue index of the requested base queue

Return Code Success or Error Code

4.1.3.2 QOSSCHED_CMD_SET_QUEUE_BASE

The QOSSCHED_CMD_SET_QUEUE_BASE command is used to set the queue number index of the base
queue for each of the QOS Schedule and the Drop Scheduler.

Calling Parameters:

Command QOSSCHED_CMD_SET_QUEUE_BASE (0x81)

Option
0: Set base queue of the QoS Scheduler (120 if drop scheduler not
present, 80 if drop scheduler is present queues)1: Set base queue of the
Drop Scheduler (80 queues)

Index
Queue index of the base queue of the specified QOS queue region. Must
be aligned to a multiple of 32 queues.

Returns:

Return Code Success or Error Code

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

4.1.4 Timer Configuration

The PDSP timer determines when credit is passed out. The recommended interval is 100us. If the interval is
set too low, the credit “resolution” becomes an issue (you don’t want to doll out one byte at a time), and the
firmware performance may not be able to keep up with the interval requested.

The timer is configured by supplying a timer constant. The constant is computed as follows:

Constant = (QMSS_Clock_Frequency * Desired_Interval) / 2

For example, if the QMSS is running at 350MHz, and the desired credit interval is 100us, the constant value
to program would be:

Constant = (350,000,000 * 0.000100) / 2 = 17500

4.1.4.1 QOSSCHED_CMD_TIMER_CONFIG

The QOSSCHED_CMD_TIMER_CONFIG command is used to configure QOS credit interval timer.

Calling Parameters:

Command QOSSCHED_CMD_TIMER_CONFIG (0x82)

Option not used

Index Timer Constant

Returns:

Return Code Success or Error Code

4.1.5 Enable / Disable QoS Scheduler Physical Port

4.1.5.1 QOSSCHED_CMD_PORT_ENABLE

The QOSSCHED_CMD_PORT_ENABLE command is used to enable or disable a QoS Scheduler physical
port. The configuration should be performed by the host before executing this command. All parameters can
be changed on a disabled port, while the number of queues and groups should not be changed on a running
port (but the credits and units can be changed).

When a port is disabled, all packets on QOS queues contained in that port are discarded.

Calling Parameters:

Command QOSSCHED_CMD_PORT_ENABLE (0x90)

Option
Set to 1 to enable the port
Set to 0 to disable the port

Index

Index is split into a MSB and LSB
MSB = 0, LSB=0-19 : Enable/disable QoS scheduler port
MSB = 1, LSB=0 : Enable/disable Drop Scheduler

Returns:

Return Code Success or Error Code

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

4.1.6 Copy Configuration To/From Shadow

4.1.6.1 QOSSCHED_CMD_PORT_SHADOW

The QOSSCHED_CMD_PORT_SHADOW command is used copy the configuration between the active area
and the shadow area.

Calling Parameters:

Command QOSSCHED_CMD_PORT_SHADOW (0x91)

Option
Set to 0 to copy from an active port to the shadow area
Set to 1 to copy from shadow area to an active (or disabled) port.

Index

Index is split into a MSB and LSB
MSB = 0, LSB=0-19 : Copy QoS scheduler port config
MSB = 1, LSB=0: Copy drop scheduler profile config
MSB = 2, LSB=0 : Copy all drop scheduler queues
MSB = 3, LSB=0 : Copy all drop scheduler output config profiles
MSB = 4, LSB=0 : Copy drop scheduler top global config

Returns:

Return Code Success or Error Code

4.1.7 Stats Request

4.1.7.1 QOSSCHED_CMD_REQ_STATS

The QOSSCHED_CMD_REQ_STATS command is used to atomically copy and optionally reset the stats
from a single queue to the statistics shadow area in section 4.2.1.

Calling Parameters:

Command QOSSCHED_CMD_REQ_STATS (0x92)

Option

Used as a bit field where:
0x0001: reset the forwarded bytes stat
0x0002: reset the forwarded packets stats
0x0004: reset the discarded bytes stats
0x0008: reset the discarded packets stats.
0x0080: request drop scheduler stats instead of QoS scheduler stats

Index

QoS Scheduler:
Used as a bit field to index a specific queue when option bit 0x80 is not
set. Mapping for QoS scheduler and QoS scheduler + drop scheduler
Bits 0-4: physical port
Bits 5-7: logical group
Bits 8-15: queue within group.

Mapping for wide QoS scheduler
Bits 0-2: physical port
Bits 3-7: logical group
Bits 8-15: queue within group.

For “wide” QoS scheduler or QoS scheduler without drop scheduler,
setting “queue within group” to 0xff will transfer all of the stats for the
queues in the group to the shadow area (instead of the stats area).

Drop Scheduler:
Specifies stats profile 0-47 when option bit 0x80 is set.

Returns:

Return Code Success or Error Code

 The statistics are copied to the shadow area in section 3.2.12.

Texas Instruments Incorporated Software Design Specification
Revision B Navigator QoS Scheduler Family Firmware

4.2 Internal Memory Allocation

4.2.1 PDSP / QMSS Scratch RAM Allocation

The firmware assumes that 8K bytes of RAM are available. No base address is assumed, it is taken from
constant register c9 (which is 0xbc000 on keystone 1 devices). The following addresses are relative to that
base.

Mapping for QoS Scheduler (Narrow)

Address Length Field
0x0000 0x0040 Command Buffer (public)
0x0040 0x0220 Shadow Configuration Area for one port (public)
0x0208 0x0080 -free-
0x02E0 0x0008 Push Proxy (public)
0x02E8 0x0018 -free-
0x0300 0x0020 Statistics shadow area (public)
0x0320 0x0800 Port Configurations (private)
0x0B20 0x0FF0 Port dynamic state (private)
0x1B10 0x02F0 -free-
0x1E00 0x01F8 Scratch (private)
0x1FF8 0x0008 Copy of firmware’s version key (public)

QoS Scheduler + Drop Scheduler

Address Length Field
0x0000 0x0040 Command Buffer (public)
0x0040 0x01C8 Shadow Configuration Area for one port (public)
0x0208 0x00D8 -free-
0x02E0 0x0008 Push Proxy (public)
0x02E8 0x0018 -free-
0x0300 0x0020 Statistics shadow area (public)
0x0320 0x05E0 Port Configurations (private)
0x0900 0x0D00 Port dynamic state (private)
0x1600 0x0800 -free-
0x1E00 0x01F8 Scratch (private)
0x1FF8 0x0008 Copy of firmware’s version key (public)

Mapping for Wide QoS Scheduler

Address Length Field
0x0000 0x0040 Command Buffer (public)
0x0040 0x05E8 Shadow Configuration Area for one port (public)
0x0628 0x0018 -free-
0x0640 0x0008 Reserved For Push Proxy
0x0648 0x0018 -free-
0x0660 0x0020 Statistics shadow area (public)
0x0680 0x05E8 Port Configurations (private)
0x0C68 0x1000 Port dynamic state (private)
0x1C68 0x0198 -free-
0x1E00 0x01F8 Scratch (private)
0x1FF8 0x0008 Copy of firmware’s version key (public)

