

Document Version 1.5

Page 1 of 54

ICSS SWITCH FIRMWARE DESIGN GUIDE

ICSS Cut-Through Switch

Applies to Product Release: 01.00.00.17
Publication Date: October 14, 2019

Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0

Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative

Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2011-2019 Texas Instruments Incorporated - http://www.ti.com/

Texas Instruments, Incorporated

20250 Century Boulevard

Germantown, MD 20874 USA

Page 2 of 54 Document Version 1.5

ICSS Cut-Through Switch

This document is intended for users who are interested in getting more detailed understanding of

the firmware design. It discusses ICSS based Switch firmware implementation details along with

any features added on top of the basic Switch firmware. It mentions the memory maps, structures

and software design flow of the firmware.

Note: Those who just want to use ICSS Switch firmware may not need to go through this
document.

Page 3 of 54 Document Version 1.5

ICSS Cut-Through Switch

TABLE OF CONTENTS

1 Introduction ... 6

2 Requirements ... 7

2.1 Cut-Through Switch High Level Requirements .. 7

2.2 STP Switch High Level Requirements .. 7

3 Design Description ... 8

3.1 System Decomposition Diagram ... 8

4 Firmware Detailed Design .. 9

4.1 Firmware Architecture Overview ... 9

4.1.1 Architecture and Design .. 9

4.1.2 PRU0/1 DMEM and ICSS Shared RAM memory map for Switch

firmware ... 10

4.1.3 Scratchpad usage design ... 16

4.1.4 PRU Register Usage Design ... 18

4.1.5 Receive Task design ... 23

4.1.6 Buffer Descriptors, Queue Descriptors and Receive Context 31

4.1.7 Quality of Service (QoS).. 33

4.1.8 Transmit Task design .. 34

4.1.9 Queue Contention Task Design .. 39

4.1.10 Statistics Task ... 43

4.1.11 Storm Prevention ... 44

4.1.12 Learning Bridge.. 45

4.2 STP Switch .. 46

4.2.1 Memory Map .. 46

4.2.2 Buffer Descriptor .. 47

4.2.3 R22 .. 47

4.2.4 STP Support .. 47

4.2.5 Forwarding Data Base ... 47

5 Revision History ... 53

Page 4 of 54 Document Version 1.5

ICSS Cut-Through Switch

LIST OF FIGURES

Figure 1. Switch Overall Design .. 8
Figure 2. System Decomposition Diagram ... 8
Figure 3. Switch Firmware high level architecture ... 9
Figure 4. Micro Scheduler .. 21
Figure 5: MS schedules tasks in round robin manner .. 22
Figure 6: RCV FIRT BLOCK .. 27
Figure 7: RECEIVE NEXT BLOCK ... 28
Figure 8 : Transmit First Block ... 36
Figure 9 : Transmit Next Block ... 37
Figure 10 : Transmit Last Block .. 38
Figure 11 : Host Queue Contention Scenario .. 40
Figure 12 : Port queue contention scenario .. 41

Page 5 of 54 Document Version 1.5

ICSS Cut-Through Switch

List of Tables

Table 1. High Level Requirements .. 7
Table 2. PRU0 DMEM Memory Map ... 10
Table 3. PRU1 DMEM Memory Map ... 12
Table 4. ICSS Shared RAM Memory Map ... 13
Table 5. L3 OCMC RAM Memory Map... 14
Table 6. Statistics Offsets .. 15
Table 7. Scratchpad Register Usage .. 17
Table 8. PRU Register Usage .. 18
Table 9. Buffer Descriptor Table ... 31
Table 10. Queue Descriptor Table ... 31
Table 11. Firmware Sources Description .. 52

Page 6 of 54 Document Version 1.5

ICSS Cut-Through Switch

1 Introduction

ICSS based Cut-Through Switch is a three port learning Ethernet switch. The

development goal of Switch was to apply Ethernet to automation applications which

require short cut-through latency and low hardware costs.

Typical automation networks are characterized by chains of slaves connected in a

serial manner, thus making it necessary to forward frames at each node as soon as

possible. If frame is stored and forwarded on every node then it leads to delays in the

propagation of frames and thus poor overall network performance.

With Cut-Through Switch, the Ethernet packet or frame is no longer received and

then forwarded at every node. Cut-Through latency depends on when the forwarding

decision is made for a frame which is being received. In keeping the requirements of

various industrial protocols, the decision point at which cut-through decision is taken

can be configured.

In industrial protocols there is Real Time Phase (RT) when process data is exchanged

and Non-Real Time Phase (NRT) when TCP/IP frames are transmitted. Switch handles

the NRT phase of the protocol cycle.

Page 7 of 54 Document Version 1.5

ICSS Cut-Through Switch

2 Requirements

2.1 Cut-Through Switch High Level Requirements

Requirements Remarks
Cut-Through Supported
Store and Forward Supported

1 ms buffering per port Supported

Host IRQ Supported

Ethernet QoS Supported but with 4 queues
instead of 8. So, it is not a
standard Ethernet QoS
implementation.

802.1 learning switch Supported

Statistics Supported
Queue-Contention Handling on each port Supported

Three-Port Switch Supported
Storm Prevention Supported

Table 1. High Level Requirements

2.2 STP Switch High Level Requirements

Requirements Remarks
Cut-Through Supported
Store and Forward Supported

1 ms buffering per port Supported

Host IRQ Supported

Ethernet QoS Supported but with 4 queues
instead of 8. So, it is not a
standard Ethernet QoS
implementation.

802.1 learning switch Supported, learning done in the
firmware (see design)

Statistics Supported
Queue-Contention Handling on each port Supported

Three-Port Switch Supported
Storm Prevention Supported
Per-port STP states Supported
Multicast/VLAN packet filtering Supported

PTP Supported

RX Interrupt Pacing Supported

http://sw-wiki.india.ti.com/twiki/bin/view/ArmMpu/AmIndustrial/EtherCat?sortcol=0;table=1;up=0#sorted_table
http://sw-wiki.india.ti.com/twiki/bin/view/ArmMpu/AmIndustrial/EtherCat?sortcol=1;table=1;up=0#sorted_table
http://sw-wiki.india.ti.com/twiki/bin/view/ArmMpu/AmIndustrial/EtherCat?sortcol=0;table=1;up=0#sorted_table
http://sw-wiki.india.ti.com/twiki/bin/view/ArmMpu/AmIndustrial/EtherCat?sortcol=1;table=1;up=0#sorted_table

Page 8 of 54 Document Version 1.5

ICSS Cut-Through Switch

3 Design Description

This section discusses the overall flow & interaction.

Figure 1. Switch Overall Design

3.1 System Decomposition Diagram

Figure 2. System Decomposition Diagram

Page 9 of 54 Document Version 1.5

ICSS Cut-Through Switch

4 Firmware Detailed Design

4.1 Firmware Architecture Overview

4.1.1 Architecture and Design

Figure 3. Switch Firmware high level architecture

1. Host Core functions (ARM, DSP)

i. Run NDK Host stack

ii. Switch initializations

2. PRU0 functions

i. Receive frames on Port 1

ii. Transmit frames on Port 2

iii. Statistics for received frames on Port1 and transmit frames on Port

2.

iv. Queue contention handling for Host port and Port 2.

v. Cut-Through frames received on Port 1 to Port 2.

vi. Store & Forward frames received on Port 1 to Port2.

vii. Receive frame in Shadow buffer in case of queue contention on host

and Port 2.

3. PRU1 functions are exactly symmetrical to PRU0.

Page 10 of 54 Document Version 1.5

ICSS Cut-Through Switch

4.1.2 PRU0/1 DMEM and ICSS Shared RAM memory map for Switch firmware

4.1.2.1 PRU0 DMEM memory map ICSS Shared RAM memory map. Switch doesn’t use PRU0
DMEM memory in general; most of it is free and can be utilized by other tasks. Whatever is used
is documented below. Switch Statistics memory layout documented separately.

Definition Address map Remarks

Free space 0x0000-
0x00EE

This memory space is free.

ICSS_EMAC_FW_VLAN_FILTER_CTRL_BIT
MAP_OFFSET

0x00EF VLAN Filter Control

ICSS_EMAC_FW_VLAN_FILTER_DROP_CN
T_OFFSET

0x00F0 VLAN Filter Drop count

ICSS_EMAC_FW_MULTICAST_FILTER_MA
SK_OFFSET

0x00F4 Multicast filter Mask (6 bytes)

ICSS_EMAC_FW_MULTICAST_FILTER_CT
RL_OFFSET

0x00FA Multicast filter feature control

ICSS_EMAC_FW_MULTICAST_FILTER_OV
ERRIDE_STATUS

0x00FB Multicast filter override for Hash
override

ICSS_EMAC_FW_MULTICAST_FILTER_DR
OP_CNT_OFFSET

0x00FC Multicast filter drop count

ICSS_EMAC_FW_MULTICAST_FILTER_TA
BLE

0x0100 Multicast filter table, 256 bytes

ICSS_EMAC_FW_VLAN_FILTER_TABLE_SI
ZE_BYTES

0x0200 Vlan filter table 512 bytes

Protocol Specific 0x0400-
0x1EFF

Available for protocol-specific usage.

Switch Statistics 0x1F00-
0x1F8F

Switch Statistics for PRU1 are stored in
this memory space. (See Switch
Statistics table below)

STORM_PREVENTION_OFFSET 0x1F90 Used to store storm prevention credits
and status for Port 0

PHY_SPEED_OFFSET 0x1F94 Phy speed status. Indicates to the
firmware whether PHY is in 10 or 100
mbps.

PORT_STATUS_OFFSET 0x1F98 Contains information about PHY being
in half or full duplex.

COLLISION_COUNTER 0x1F99 Temporary variable used in Firmware
for Half duplex implementation

RX_PKT_SIZE_OFFSET 0x1F9A Receive packet size

PORT_CONTROL_ADDR 0x1F9E Port enable bit (0 = port disabled, 1 =
port enabled)

PORT_MAC_ADDR 0x1FA2 MAC address for current port

RX_INT_STATUS_OFFSET 0x1FA8 Receive interrupt status bit

STP_INVALID_STATE_OFFSET 0x1FAC STP state error counter

Reserved 0x1FB0-
0x1FFF

Reserved for future use.

Table 2. PRU0 DMEM Memory Map

4.1.2.2 PRU1 DMEM memory map

Definition Address map Remarks

Free space. 0x0000 –
0x00EE

This memory space is free.

Page 11 of 54 Document Version 1.5

ICSS Cut-Through Switch

ICSS_EMAC_FW_VLAN_FILTER_CTRL_BIT
MAP_OFFSET

0x00EF VLAN Filter Control

ICSS_EMAC_FW_VLAN_FILTER_DROP_CN
T_OFFSET

0x00F0 VLAN Filter Drop count

ICSS_EMAC_FW_MULTICAST_FILTER_MA
SK_OFFSET

0x00F4 Multicast filter Mask (6 bytes)

ICSS_EMAC_FW_MULTICAST_FILTER_CT
RL_OFFSET

0x00FA Multicast filter feature control

ICSS_EMAC_FW_MULTICAST_FILTER_OV
ERRIDE_STATUS

0x00FB Multicast filter override for Hash
override

ICSS_EMAC_FW_MULTICAST_FILTER_DR
OP_CNT_OFFSET

0x00FC Multicast filter drop count

ICSS_EMAC_FW_MULTICAST_FILTER_TA
BLE

0x0100 Multicast filter table, 256 bytes

ICSS_EMAC_FW_VLAN_FILTER_TABLE_SI
ZE_BYTES

0x0200 Vlan filter table 512 bytes

Protocol Specific 0x0400-
0x1CFF

Available for protocol-specific usage.

P1_Q1_TX_CONTEXT_OFFSET 0x1D00 Context for the priority 0 transmit queue
on Port 1.

P1_Q2_TX_CONTEXT_OFFSET 0x1D08 Context for the priority 1 transmit queue
on Port 1.

P1_Q3_TX_CONTEXT_OFFSET 0x1D10 Context for the priority 2 transmit queue
on Port 1.

P1_Q4_TX_CONTEXT_OFFSET 0x1D18 Context for the priority 3 transmit queue
on Port 1.

P2_Q1_TX_CONTEXT_OFFSET 0x1D20 Context for the priority 0 transmit queue
on Port 2.

P2_Q2_TX_CONTEXT_OFFSET 0x1D28 Context for the priority 1 transmit queue
on Port 2.

P2_Q3_TX_CONTEXT_OFFSET 0x1D30 Context for the priority 2 transmit queue
on Port 2.

P2_Q4_TX_CONTEXT_OFFSET 0x1D38 Context for the priority 3 transmit queue
on Port 2.

COL_TX_CONTEXT_P1_Q1_OFFSET_ADD
R

0x1D40 Context for the transmit collision queue
on Port 1.

COL_TX_CONTEXT_P2_Q1_OFFSET_ADD
R

0x1D48 Context for the transmit collision queue
on Port 2.

P1_Q1_RX_CONTEXT_OFFSET 0x1D70 Context for the priority 0 receive queue
on Port 1.

P1_Q2_RX_CONTEXT_OFFSET 0x1D78 Context for the priority 1 receive queue
on Port 1.

P1_Q3_RX_CONTEXT_OFFSET 0x1D80 Context for the priority 2 receive queue
on Port 1.

P1_Q4_RX_CONTEXT_OFFSET 0x1D88 Context for the priority 3 receive queue
on Port 1.

P2_Q1_RX_CONTEXT_OFFSET 0x1D90 Context for the priority 0 receive queue
on Port 2.

P2_Q2_RX_CONTEXT_OFFSET 0x1D98 Context for the priority 1 receive queue
on Port 2.

P3_Q3_RX_CONTEXT_OFFSET 0x1DA0 Context for the priority 2 receive queue
on Port 2.

P4_Q4_RX_CONTEXT_OFFSET 0x1DA8 Context for the priority 3 receive queue
on Port 2.

COL_RX_CONTEXT_P0_OFFSET_ADDR 0x1DB0 Context for the receive collision queue

Page 12 of 54 Document Version 1.5

ICSS Cut-Through Switch

on the Host port.

COL_RX_CONTEXT_P1_OFFSET_ADDR 0x1DBC Context for the receive collision queue
on Port 1.

COL_RX_CONTEXT_P2_OFFSET_ADDR 0x1DC8 Context for the receive collision queue
on Port 2.

QUEUE_DESCRIPTOR_OFFSET_ADDR 0x1E00 Table offset for queue descriptors

QUEUE_OFFSET_ADDR 0x1E18 Table offset for queue

QUEUE_SIZE_ADDR 0x1E30 Table offset for queue size

P1_MAC_ADDR 0x1E48 Offset of Port1 MAC address. Reserved

P2_MAC_ADDR 0x1E50 Offset of Port2 MAC address. Reserved

INTERFACE_MAC_ADDR 0x1E58 Contains the MAC address of switch.

COLLISION_STATUS_ADDR 0x1E60 Offset of queue contention status
register

P0_COL_QUEUE_DESC_OFFSET 0x1E64 Offset of queue contention descriptor of
port 0

P1_COL_QUEUE_DESC_OFFSET 0x1E6C Offset of queue contention descriptor of
port 1

P2_COL_QUEUE_DESC_OFFSET 0x1E74 Offset of queue contention descriptor of
port 2

P0_QUEUE_DESC_OFFSET 0x1E7C 4 host receive queue descriptors for
port 0

P1_QUEUE_DESC_OFFSET 0x1E9C 4 queue descriptors for port 1

P2_QUEUE_DESC_OFFSET 0x1EBC 4 queue descriptors for port 2

Switch Statistics 0x1F00-
0x1F8F

Switch Statistics for PRU1 are stored in
this memory space.

STORM_PREVENTION_OFFSET 0x1F90 Used to store storm prevention credits
and status for Port 1

PHY_SPEED_OFFSET 0x1F94 Phy speed status. Indicates to the
firmware whether PHY is in 10 or 100
mbps.

PORT_STATUS_OFFSET 0x1F98 Contains information about PHY being
in half or full duplex.

COLLISION_COUNTER 0x1F99 Temporary variable used in Firmware
for Half duplex implementation

RX_PKT_SIZE_OFFSET 0x1F9A Receive packet size

PORT_CONTROL_ADDR 0x1F9E Port enable bit (0 = port disabled, 1 =
port enabled)

PORT_MAC_ADDR 0x1FA2 MAC address for current port

RX_INT_STATUS_OFFSET 0x1FA8 Receive interrupt status bit

STP_INVALID_STATE_OFFSET 0x1FAC STP state error counter

Reserved 0x1FB0-
0x1FFF

Reserved for future use.

Table 3. PRU1 DMEM Memory Map

4.1.2.3 ICSS Shared RAM memory map

Below are offset addresses of the buffer descriptors for the default configuration of queue sizes in
“icss_switch.h” file. Since the queue sizes are configurable, offset addresses will automatically change
when the size of one or more queue is changed.

Definition Offset Remarks

RESERVED 0x0000 Reserved for future usage.

PTP Registers 0x0008-
0x011C

PTP API registers

RESERVED 0x011D- Reserved for future usage

Page 13 of 54 Document Version 1.5

ICSS Cut-Through Switch

0x03FF

P0_Q1_BD_OFFSET 0x0400 Buffer descriptors for the priority 0 host
receive queue.

P0_Q2_BD_OFFSET 0x0708 Buffer descriptors for the priority 1 host
receive queue.

P0_Q3_BD_OFFSET 0x0A10 Buffer descriptors for the priority 2 host
receive queue.

P0_Q4_BD_OFFSET 0x0D18 Buffer descriptors for the priority 3 host
receive queue.

P1_Q1_BD_OFFSET 0x01020 Buffer descriptors for the priority 0
transmit queue on Port 1.

P1_Q2_BD_OFFSET 0x11A4 Buffer descriptors for the priority 1
transmit queue on Port 1.

P1_Q3_BD_OFFSET 0x1328 Buffer descriptors for the priority 2
transmit queue on Port 1.

P1_Q4_BD_OFFSET 0x14AC Buffer descriptors for the priority 3
transmit queue on Port 1.

P2_Q1_BD_OFFSET 0x1630 Buffer descriptors for the priority 0
transmit queue on Port 2.

P2_Q2_BD_OFFSET 0x17B4 Buffer descriptors for the priority 0
transmit queue on Port 2.

P2_Q3_BD_OFFSET 0x1938 Buffer descriptors for the priority 0
transmit queue on Port 2.

P2_Q4_BD_OFFSET 0x1ABC Buffer descriptors for the priority 0
transmit queue on Port 2.

P0_COL_BD_OFFSET 0x1C40 48 Collision buffer descriptors for port 0
send queue

P1_COL_BD_OFFSET 0x1D00 48 Collision buffer descriptors for port 1
send queue

P2_COL_BD_OFFSET 0x1DC0 48 Collision buffer descriptors for port 2
send queue

RESERVED 0x1E80-
0x1FAD

Reserved for future usage

Interrupt Pacing Registers 0x1FAE-
0x1FBF

Interrupt pacing API registers

RESERVED 0x1FC0-
0x1FFF

Reserved for future usage

ICSS_EMAC_FW_FDB__IDX_TBL_OFFSET 0x2000 FDB Index Table

ICSS_EMAC_FW_FDB__MAC_TBL_OFFSE
T

0x2400 FDB MAC Table

ICSS_EMAC_FW_FDB__STP_P1_STP_STA
TE_OFFSET

0x2E00 Port 1 STP state

ICSS_EMAC_FW_FDB__STP_P2_STP_STA
TE_OFFSET

0x2E01 Port 2 STP state

ICSS_EMAC_FW_FDB__FLOOD_ENABLE_
FLAGS_OFFSET

0x2E02 Flood enable flags per-port (bit0 ->
Host, bit1 -> Port 1, bit2 → Port 2

ICSS_EMAC_FW_FDB__ARBITRATION_OF
FSET

0x2E03 FDB locking mechanism

Reserve for protocols. 0x2E04 -
0x2FFF

This memory space is reserved for
protocol specific usage. Do not store
generic switch control variables here.

Table 4. ICSS Shared RAM Memory Map

4.1.2.4 L3 OCMC RAM memory map

Page 14 of 54 Document Version 1.5

ICSS Cut-Through Switch

Below are offset addresses of the queue data buffers for the default configuration of queue sizes in
“icss_switch.h” file. Since the queue sizes are configurable, offset addresses will automatically change
when the size of one or more queue is changed.

Definition Offset Remarks

P0_Q1_BUFFER_OFFSET 0x0000 Offset of data buffers of highest priority host
queue in L3 RAM

P0_Q2_BUFFER_OFFSET 0x1840 Offset of data buffers of second priority host
queue in L3 RAM

P0_Q3_BUFFER_OFFSET 0x3080 Offset of data buffers of third priority host queue in
L3 RAM

P0_Q4_BUFFER_OFFSET 0x48C0 Offset of data buffers of least priority host queue in
L3 RAM

P1_Q1_BUFFER_OFFSET 0x6100 Offset of data buffers of first priority Port1 queue in
L3 RAM

P1_Q2_BUFFER_OFFSET 0x6D20 Offset of data buffers of second priority Port1
queue in L3 RAM

P1_Q3_BUFFER_OFFSET 0x7940 Offset of data buffers of third priority Port1 queue
in L3 RAM

P1_Q4_BUFFER_OFFSET 0x8560 Offset of data buffers of fourth priority Port1 queue
in L3 RAM

P2_Q1_BUFFER_OFFSET 0x9180 Offset of data buffers of first priority Port2 queue in
L3 RAM

P2_Q2_BUFFER_OFFSET 0x9DA0 Offset of data buffers of first priority Port2 queue in
L3 RAM

P2_Q3_BUFFER_OFFSET 0xA9C0 Offset of data buffers of first priority Port2 queue in
L3 RAM

P2_Q4_BUFFER_OFFSET 0xB5E0 Offset of data buffers of first priority Port2 queue in
L3 RAM

Reserved Space 0xC200 to
0xEDFF

Since queue sizes are programmable, this space
acts as buffer if there is need to increase the
queue sizes.

P0_COL_BUFFER_OFFSET 0xEE00 Offset of data buffers of host shadow queue in L3
RAM

P1_COL_BUFFER_OFFSET 0xF400 Offset of data buffers of Port1 shadow queue in L3
RAM

P2_COL_BUFFER_OFFSET 0xFA00 Offset of data buffers of Port2 shadow queue in L3
RAM

Table 5. L3 OCMC RAM Memory Map

4.1.2.5 Statistics memory map

This is common to both PRU0 and PRU1, DRAM0 stores statistics for PRU0 and DRAM1 for PRU1.

Definition Offset Remarks

TX_BC_FRAMES_OFFSET 0x1F00 Number of Transmitted Broadcast Frames

TX_MC_FRAMES_OFFSET 0x1F04 Number of Transmitted Multicast Frames

TX_UC_FRAMES_OFFSET 0x1F08 Number of Transmitted Unicast Frames

TX_BYTE_CNT_OFFSET 0x1F0C Total Number of Bytes transmitted

RX_BC_FRAMES_OFFSET 0x1F10 Number of Received Broadcast Frames

RX_MC_FRAMES_OFFSET 0x1F14 Number of Received Multicast Frames

RX_UC_FRAMES_OFFSET 0x1F18 Number of Received Unicast Frames

RX_BYTE_CNT_OFFSET 0x1F1C Total Number of Bytes received

LATE_COLLISION_OFFSET 0x1F50 Number of packets which suffered late
collision

SINGLE_COLLISION_OFFSET 0x1F54 Number of bytes which suffered only one

Page 15 of 54 Document Version 1.5

ICSS Cut-Through Switch

collision

MULTIPLE_COLLISION_OFFSET 0x1F58 Number of bytes which suffered more than
one collision

EXCESS_COLLISION_OFFSET 0x1F5C Number of bytes which suffered more than
15 collisions

TX_OVERFLOW_OFFSET 0x1F88 Reserved

RX_MISALIGNMENT_COUNT_OFFSET 0x1F60 Packets which had an odd number of nibbles

STORM_PREVENTION_COUNTER 0x1F64 Multicast and Broadcast Packets which were
discarded by Storm prevention

RX_ERROR_OFFSET 0x1F68 Number of packets which triggered Rx MAC
errors or number of instances where a MAC
error was detected.

SFD_ERROR_OFFSET 0x1F6C Number of Packets with incorrect preamble.

TX_DEFERRED_OFFSET 0x1F70 Packets which were deferred from
transmission at least once.

TX_ERROR_OFFSET 0x1F74 Reserved

RX_OVERSIZED_FRAME_OFFSET 0x1F78 Number of packets with byte size greater
than 1522. (Default value. This is a
programmable value in MII RT)

RX_UNDERSIZED_FRAME_OFFSET 0x1F7C Number of packets with byte size less than
64 (including CRC). Packets with size less
than 18 are counted as Rx Error.

RX_CRC_COUNT_OFFSET 0x1F80 Number of Packets with CRC/FCS Error.

RX_DROPPED_FRAMES_OFFSET 0x1F84 Number of frames dropped due to link
loss/same dst as host.

TX_64_BYTE_FRAME_OFFSET 0x1F20 Number of transmitted packets of size 64
bytes

TX_65_127_BYTE_FRAME_OFFSET 0x1F24 Number of transmitted packets of size
between 65-127 bytes.

TX_128_255_BYTE_FRAME_OFFSET 0x1F28 Number of transmitted packets of size
between 128-255 bytes.

TX_256_511_BYTE_FRAME_OFFSET 0x1F2C Number of transmitted packets of size
between 256-511 bytes.

TX_512_1023_BYTE_FRAME_OFFSET 0x1F30 Number of transmitted packets of size
between 512-1023 bytes.

TX_1024_MAX_BYTE_FRAME_OFFSET 0x1F34 Number of transmitted packets of size
greater than 1023 bytes.

RX_64_BYTE_FRAME_OFFSET 0x1F38 Number of received packets of size 64 bytes

RX_65_127_BYTE_FRAME_OFFSET 0x1F3C Number of received packets of size between
65-127 bytes.

RX_128_255_BYTE_FRAME_OFFSET 0x1F40 Number of received packets of size between
128-255 bytes.

RX_256_511_BYTE_FRAME_OFFSET 0x1F44 Number of received packets of size between
256-511 bytes.

RX_512_1023_BYTE_FRAME_OFFSET 0x1F48 Number of received packets of size between
512-1023 bytes.

RX_1024_MAX_BYTE_FRAME_OFFSET 0x1F4C Number of received packets of size greater
than 1023 bytes.

Table 6. Statistics Offsets

Page 16 of 54 Document Version 1.5

ICSS Cut-Through Switch

4.1.3 Scratchpad usage design

Three shared scratchpads (10, 11 and 12) with 30 registers each between PRU0 and

PRU1 is used for keeping Receive Task and Transmit task contexts. Receive Task has

two contexts to save, one for host receive and second one is for port receive.

//Structure for MII TX context scratchpad entry

.struct MII_TX_CONTEXT

 .u8 flags

.u16 QUEUE_DESC_OFFSET

.u16 BYTE_CNT

.u16 Packet_Length

.u16 BUFFER_DESC_OFFSET

.u16 BUFFER_INDEX

.u16 BUFFER_OFFSET

.u16 TOP_MOST_BUFFER_INDEX

.u16 BASE_BUFFER_DESC_OFFSET

 .u16 TOP_MOST_BUFFER_DESC_OFFSET

.ends

//Structure for MII RX context scratchpad entry

.struct MII_RCV_CONTEXT

 .u8 rx_flags

 .u8 tx_flags

 .u8 rx_flags_extended

 .u8 qos_queue

.u16 byte_cntr

.u16 wrkng_wr_ptr

.u16 rd_ptr

 .u16 buffer_index

 .u16 base_buffer_index

 .u16 rcv_queue_pointer

 .u16 base_buffer_desc_offset

 .u16 top_most_buffer_desc_offset

.ends

//Structure for MII Port RX context scratchpad entry

.struct MII_PORT_RCV_CONTEXT

.u16 byte_cntr

u16 wrkng_wr_ptr

Page 17 of 54 Document Version 1.5

ICSS Cut-Through Switch

.u16 rd_ptr

 .u16 buffer_index

 .u16 base_buffer_index

 .u16 rcv_queue_pointer

 .u16 base_buffer_desc_offset

 .u16 top_most_buffer_desc_offset

.ends

Below table shows the allocation of above Tx and RCV contexts on the scratchpad:

PRU Core BANK0 BANK1 BANK2

PRU0 Tx Context REG 13 ….. REG 17

PRU1 Tx Context REG 13 ….. REG 17

PRU0 Host RCV

Context

 REG 25 ….. RGE 29

PRU1 Host RCV

Context

 REG 25 ….. REG 29

PRU0 Port RCV

Context

REG 0 ….. REG 3

PRU1 Port RCV

Context

REG 4 ….. REG 7

Table 7. Scratchpad Register Usage

Separate registers are need for host receive and port receive on scratchpad because

broadcast and possibly a multicast frame is received on host as well as port queue.

Below are defines used for storing and reading context/data from/to the scratchpad

and RX L2 Fifo:

#define BANK0 10

#define BANK1 11

#define BANK2 12

#define RX_L2_BANK0_ID 20

#define RX_L2_BANK1_ID 21

Page 18 of 54 Document Version 1.5

ICSS Cut-Through Switch

4.1.4 PRU Register Usage Design

Each PRU has 32 registers, from REG 0 to REG 31, out of which REG 30 and REG 31

have special use and cannot be used by firmware for storing data. Below is the

register allocation table which shows the registers used by various tasks. Since the

firmware is symmetrical on both PRU’s , same allocation is true for both PRU’s.

R22 is used as a persistent register on both PRU’s. Bits 16-21 are used by PTP/1588

implementation (details in 4.1.17) while bits 15 and 23-31 are used by switch. Bits 0

to 14 are free for usage by other protocols.

4.1.4.1 R22 Usage

As mentioned above, R22 is a persistent register with configuration and status information that
would be expensive to read from memory. The R22 bit allocation is as follows:

Bit Definition Description

31 PACKET_TX_ALLOWED TX is allowed

30 Entire_Tx_Data_Not_Pushed Entire TX data was not pushed

29 RX_LB_PARTIALLY_PROCESSED RX last byte partially processed

28 RX_BC_FRAME Received broadcast frame

27 RX_MC_FRAME Received multicast frame

26 TX_BC_FRAME Transmit broadcast frame

25 TX_MC_FRAME Transmit multicast frame

24 RX_FWD_FLAG Rcv packet marked for forwarding

Classification MII Context Descriptor Context Temp Registers Permanent Registers

RCV Host

Queue
MII_RCV(R25..R29)

RCV_DATA(R2..R9)

Length(R18)

RCV_QUEUE_DESC_REG

(R20-R21)

RCV_TEMP_REG_x

(R20,R21,R13)

None

RCV Forward

Queue
MII_RCV_PORT(R25..R29)

RCV_DATA(R2..R9)

Length(R18)

RCV_QUEUE_DESC_REG

(R20-R21)

RCV_TEMP_REG_x

(R20,R21,R13)

None

Shadow Queue Same as RCV Host Queue Same as Rx Host Queue

QUEUE_DESCRIPTOR_REG (R10,R11)

COLLISION_QUEUE_DESCRIPTOR_REG

(R12,R13)

COLLISION_STATUS_REG

(R21)

Various Uses

(R6..R9) (R15..R18)

None

Cut-Through Same as RCV Host Queue Same as RCV Host Queue Same as RCV Host Queue CUT_THROUGH_BYTE_CNT

(R23.w2)

PREVIOUS_R18_RCV_BYTEC

OUNT

(R23.b1)

Tx Task TX_CONTEXT(R13..R17)

TX Data(R2..R9)

QUEUE_DESC_REG(R2..R3) TEMP_REG_x (R0,R2,R3)

Others (R10,R11)

TX_DATA_POINTER (R1.b3)

TX Flags (R22.b3)

Micro-Scheduler None None TEMP_REG_2

(R4)

TASK_TABLE_ROW0 (R19)

CURRENT_TASK_POINTER

(R1.b2)

Table 8. PRU Register Usage

Page 19 of 54 Document Version 1.5

ICSS Cut-Through Switch

23 UNUSED Free for use with other protocols

22 UNUSED Free for use with other protocols

21 UNUSED Free for use with other protocols

20 UNUSED Free for use with other protocols

19 UNUSED Free for use with other protocols

18 UNUSED Free for use with other protocols

17 UNUSED Free for use with other protocols

16 UNUSED Free for use with other protocols

15 UNUSED Free for use with other protocols

14 RX_IS_PTP_BIT (PTP) Indicate a PTP frame on RX

13 TX_IS_PTP_BIT (PTP) Indicate a PTP frame on TX

12 CHECK_SYNC0_BIT (PTP) Internal book-keeping to generate 1PPS
sync0 pulse

11 DUT_IS_MASTER_BIT (PTP) DUT is master (not currently used)

10 OPPOSITE_PORT_LINK_UP The other port link is up

9 TX_CALLBACK_INTERRUPT_BIT (PTP) TX callback interrupt is pending

8 PTP_RELEASE_HOST_QUEUE_BIT (PTP) Rcv flag is cleared in the middle (Host
queue)

7 PTP_RELEASE_PORT_QUEUE_BIT (PTP) Rcv flag is cleared in the middle (Port
queue)

6 UNUSED Free for use with other protocols

5 INTR_TO_HOST_PENDING_RX RX interrupt to host is pending

4 HOST_QUEUE_EMPTY_STATUS Host queue is empty

3 UNUSED Free for use with other protocols

2 UNUSED Free for use with other protocols

1 UNUSED Free for use with other protocols

0 UNUSED Free for use with other protocols

Page 20 of 54 Document Version 1.5

ICSS Cut-Through Switch

Micro Scheduler Task design

Micro Scheduler is central to our Switch Design. It schedules various tasks which

collectively implement the functionality of Switch. Simultaneous receive and transmit

on both the Ethernet ports at the same time is not possible without Micro–Scheduler.

It checks various events and schedules appropriate tasks depending on the outcome

of those checks.

Micro-Scheduler schedules the tasks in a round-robin manner. Below, tasks are

arranged in the decreasing priority:

1. Rx Task

2. Tx Task

3. STAT Task

4. Queue Contention Task

Micro-Scheduler starts with scheduling the Rx Task and then executes the other

tasks in the round-robin scheme. It also checks for various events between the

execution of two tasks and these events can alter the scheduling. MS checks for

below events:

1. SOF: Start of a new receive packet at Port

2. Rx_EOF: Rx packet has been completely received

3. Tx_EOF: Tx packet has been completely transmitted

SOF:

Start of Frame signals a new receive packet at the physical port. MS reads data

from the RX L2 Fifo in it’s registers and checks the 6th bit of the R10 register. If this

bit is clear then MS schedules the next task. If this bit is set then it checks whether

18 bytes have been already been received or not. If 18 bytes have not been received

then next task is executed otherwise RCV_FB is called.

Rx_EOF:

End of Frame event signals that a frame has been completely received. MS checks

this event only if there is an ongoing receive at the Port. This event is routed

through the R31 register to the two PRU’s. If this events has occurred then MS calls

the RCV_LB function otherwise it schedules the execution of the next task.

Note: Bit 20 of R31 corresponds to RX_EOF for MII RX Data to PRU R31 ® and RX FIFO. We

can’t use this bit for ICSS revision 1 as on AM335x and AM437x, RX_EOF is auto-clear when a

new frame arrives in RX L2 mode.

Tx_EoF:

Transmit End of Frame event signals the completion of the transmission of a frame

and Tx Fifo is empty. Once this event has come, PRU can start the transmission of

the next packet. This event is realized through the underflow event on the Tx Fifo.

When the Tx Fifo becomes empty without seeing the TX_EoF command it generates

the underflow event. MS checks this event by reading the system event register of

the ICSS INTC.

Page 21 of 54 Document Version 1.5

ICSS Cut-Through Switch

Figure 4. Micro Scheduler

Page 22 of 54 Document Version 1.5

ICSS Cut-Through Switch

 Figure 5: MS schedules tasks in round robin manner

Page 23 of 54 Document Version 1.5

ICSS Cut-Through Switch

4.1.5 Receive Task design

4.1.5.1 Quick review of L2 FIFO architecture

The incoming frames are stored in RXL2 FIFO which is composed of 2 banks.

Each bank has 32bytes of data, 16bytes of status and a 5bit write pointer. There is

one status entry per two bytes. The write pointer gives the info about data entry

being written.

A status can be volatile or static. A volatile status is one which is not yet complete,

and hence cannot be parsed.

Note: The frames are packed contiguously. The buffer does not switch on each EOF.

4.1.5.2 Receive Frame Types

A receive frame can be one of the following types:

1. Unicast Frame

2. Broadcast Frame

3. Multicast Frame

A frame can be classified into one of the above three categories by looking at the

destination address (DA) of the frame. If the first bit (LSB) of the first byte of DA is

one then it is either multicast or broadcast frame. Further, if the DA is equal to

oxffffff then it is broadcast frame otherwise it is multicast frame. If the LSB of the

first byte of DA is zero then it is a unicast frame.

Following are actions taken by the Receive Task depending on the type of frame:

Unicast Frame:

If a frame is unicast then it’s destination address is compared against the interface

MAC address of the device/slave. If it matches then the frame is received in one of

the host queue depending on the priority of the frame. If it doesn’t match then it is

either stored & forwarded on the other MII port or it cut’s-through. It cut-through if

the other MII port is not already occupied.

Broadcast Frame:

Broadcast frame is received in the host queue as well as forwarded. If the other MII

port is not occupied then it cut’s–through otherwise it is stored and forwarded.

Multicast Frame:

If a frame is multicast then a receive table is looked up using the destination address

to determine whether the frame is received or not. Similarly, a look up also happens

in the forward table to determine whether it is forwarded or not. If the destination

address doesn’t fall in the defined group of multicast addresses then it is received

and forwarded like a broadcast frame. Firmware expects the multicast filter tables for

receive and forward are provided by the application in a specific format. This format

is described in the section 4.1.8.

Page 24 of 54 Document Version 1.5

ICSS Cut-Through Switch

4.1.5.3 Receive Task Design

Receive (Rx) Task handles the reception of frames. It can store/store & forward/cut-

through a frame depending on the destination address of the incoming frame. If a

frame is not being received then Micro-scheduler checks for the start of a receive

frame before calling the next task. If Micro-scheduler detects start of receive frame

and already 18 bytes have been received then it calls the Receive Task.

Rx Task first of all checks whether the port on which frame has arrived is enabled or

not. If that port is not enabled then the incoming frame is dropped. Rx Task then

checks whether the source address in the incoming frame matches with the interface

MAC address of the slave. If it matches then the frame is dropped.

If a incoming frame is not dropped then Rx context is initialized. Following are the

main parameters in the Rx context:

1. host_rcv_flag: This flag is set when the frame is received for the host port.

2. fwd_flag: This flag is set when a frame is stored & forwarded on the other MII

port.

3. cut_through_flag: This flag is set when a frame cut-through’s.

4. qos_queue: This field stores the priority queue as determined by the frame.

5. byte_cntr: Number of bytes already received for the frame being received.

6. buffer_index: Offset of the data buffer in L3 RAM where the receive frame is

stored.

7. base_buffer_index: Offset of the data buffer in L3 RAM corresponding to the

first buffer descriptor in the queue.

8. rcv_queue_pointer: Offset of the receive queue which is selected for the

receive frame.

9. base_buffer_desc_offset: Offset of the base buffer descriptor for the queue

selected.

10. top_most_buffer_desc_offset: Offset of the top most buffer descriptor for the

queue selected.

Rx context is initialized in the beginning and updated throughout the reception of the

frame. When Rx task enters it reads in the Rx context from the scratch pad and

saves it back before it exits. Offset’s of the top most buffer descriptor is used to

quickly determine if there is a wrap around in the receive queue.

Rx Task is partitioned into following three parts:

1. FN_RCV_FB

2. FN_RCV_NB

3. FN_RCV_LB

FN_RCV_FB: Receive First Block

This block is executed if there is a new receive frame at the port. First it parses the

incoming frame to determine whether it is received or forwarded or both. If a frame

Page 25 of 54 Document Version 1.5

ICSS Cut-Through Switch

is to be received then “host_rcv_flag” is set and if the frame is to be forwarded then

“fwd_flag” is set. If frame is received as well as forwarded then both the flags are

set. Depending on the flags set it initializes the Rx context for the host receive or

port receive or both.

When a frame has to be forwarded then first it checks whether the other MII port is

free or occupied. It is possible that a host frame might be getting transmitted on the

other MII port then the incoming Rx frame cannot cut-through. If the other MII port

is not free then the incoming frame is stored and forwarded. Depending on the

priority of the frame it is first stored/queued in one of the port queues. Later this

stored frame is forwarded when the corresponding MII port becomes free. If the

other MII port is free then cut-through of the incoming frame is possible. It set’s the

“cut_through_flag” and starts the transmission of frame by pushing the first 18 bytes

of the incoming frame to the Tx Fifo.

At the end the Rx context for both the host receive and port receive are saved. If the

cut-through is happening then control transfers to FN_RCV_NB otherwise it returns

to the Micro-scheduler.

Page 26 of 54 Document Version 1.5

ICSS Cut-Through Switch

Page 27 of 54 Document Version 1.5

ICSS Cut-Through Switch

 Figure 6: RCV FIRT BLOCK

FN_RCV_NB: Receive Next Block

This block stores the data of the receive frame in the host queue or port queue or

both. Maximum it can store a block of 32 bytes per call. If there is a on-going cut-

through for the frame being received then it sustains the cut-through by pushing the

next available data to the Tx Fifo.

Before it starts storing the frame in the queue, it calls following arbitration function

with a parameter which indicates whether is called for host queue or port queue:

 FN_QUEUE_ARBITRATION: called separately for the receive in host queue

and port queue

Call to the arbitration function returns the queue where the frame is to be received.

Returned queue can be either the main receive queue or shadow queue.

Once a queue is acquired, it starts storing the frame in blocks of 32 bytes. It checks

whether new 32 bytes have become available, if yes then stores them otherwise

transfers control to Micro-scheduler. If a frame is received as well as forwarded then

the 32 byte data is stored in both the queues. After storing the bank index flag,

rx_bank_index, is flipped to remember that the next time the data is stored from

other bank of RX L2 Fifo.

If cut-through is happening then it doesn’t return the control and stays in till the

entire frame has been received and cut-through of the frame is complete.

Page 28 of 54 Document Version 1.5

ICSS Cut-Through Switch

 Figure 7: RECEIVE NEXT BLOCK

Page 29 of 54 Document Version 1.5

ICSS Cut-Through Switch

FN_RCV_LB: Receive Last Block

This block is executed when the RX EOF event has occurred. This block may store

less the 32 bytes or exact 32 bytes or more then 32 bytes. In-case where it stores

more than 32 bytes of data, it stores from both the bank’s of RX L2 Fifo. After

storing the data of the received frame it updates the first buffer descriptor for the Rx

frame with the length of frame and port number on which frame was received.

It then updates the queue descriptor to complete the reception of the frame. Only

when the queue descriptor is updated the Host comes to know about the received

frame. For stored and forwarded frames, the Tx Task comes to know about the

received frame only when the queue descriptor for the port queue is updated.

Then it releases the acquired queue and generates an interrupt to host when the

frame is received in the host queue. It also sets a flag, RX_STAT_PEND, to signal the

STAT’s task. Error handling is discussed in a separate section.

At last it clears the RCV_active bit, clears the RX EOF in ICSS INTC and transfers

control back to the Micro-scheduler.

Page 30 of 54 Document Version 1.5

ICSS Cut-Through Switch

Page 31 of 54 Document Version 1.5

ICSS Cut-Through Switch

4.1.6 Buffer Descriptors, Queue Descriptors and Receive Context

The way incoming packets are stored in L3 OCMC RAM has a lot to do with the

manner in which they are received from FIFO. Incoming data in the form of 32 byte

chunks from the Rx FIFO is stored as is by the Firmware to L3 OCMC RAM. These

chunks are stored in contiguous manner. So a 64 byte packet would get stored in

two blocks.

Each such 32 byte block is in turn pointed to by a buffer descriptor stored in ICSS

Shared RAM. Each queue consists of a string of such buffer descriptors kept

contiguously on the ICSS Shared RAM.

A description of the Buffer Descriptor is given below

Bit(s) Name Meaning

0..13 Unused Currently unused, free for use with other protocols

14 Shadow inidcates that "index" is pointing into shadow buffer

15 TimeStamp indicates that this packet has time stamp in seperate

buffer - only needed of PTCP runs on host

16..17 Port different meaning for ingress and egress, ingress Port=0

inidcates phy port 1 and Port = 1 inidcates phy port 2.
Egress: 0 sends on phy port 1 and 1 sends on phy port 2.
Port = 2 goes over MAC table look-up

18..28 Length 11 bit of total packet length which is put into first BD only

so that host access only one BD

29 VlanTag indicates that packet has Length/Type field of 0x08100

with VLAN tag in following byte

30 Broadcast inidcates that packet goes out on both physical ports,

there will be two bd but only one buffer

31 Error indicates there was an error in the packet

Table 9. Buffer Descriptor Table

The first descriptor contains the length of the packet through which the driver knows

how many bytes it will have to copy. Since the buffer descriptors are contiguous in

memory no additional pointers are required.

0..15 Rd_ptr Read pointer. This points to the last buffer descriptor that

points to valid data, when Rx tasks puts data it
increments the Read pointer

16..31 Wr_ptr Write pointer. This points to the bottom of the first buffer

descriptor that contains the data, when Rx task on driver
reads the data it increments this. When read pointer

equals write pointer there is no data in the buffers

32-39 busy_s Is just a single bit. The busy bit is set by the driver to

indicate to the firmware that there is an ongoing copy,
firmware does not use the memory during that time.

40-47 status

48-55 max_fill_level Maximum fill level of the queue. In bytes

56-63 overflow_cnt Number of times the queue has overflown

Table 10. Queue Descriptor Table

Page 32 of 54 Document Version 1.5

ICSS Cut-Through Switch

Using the queue descriptor both firmware and driver know which is the buffer

descriptor which points to the current data and combining this with the data from

receive context (See section 4.1.3) which tells us where the top and bottom buffer

descriptors are located it’s easy to tell if there is a wraparound condition in the

queue.

Page 33 of 54 Document Version 1.5

ICSS Cut-Through Switch

4.1.7 Quality of Service (QoS)

Receive Task implements Quality of Service (QoS) for all the received frames.

Firmware uses the VLAN tag to determine the priority of received frame. There are

four priority receive queues each for the host and port. A received frame is parsed

using quality of service rules to determine in which queue the frame would be

received. QoS rules are same for the host and port receive queues. Following QoS

rules are implemented by the firmware:

1. All the non VLAN tagged frames are stored in the lowest priority queue

(queue priority 3).

2. VALN tagged frames with “Priority code point (PCP)” value of 6 and 7 are

stored in highest priority queue (queue priority 0).

3. VALN tagged frames with “Priority code point (PCP)” value of 4 and 5 are

stored in second highest priority queue (queue priority 1).

4. VALN tagged frames with “Priority code point (PCP)” value of 2 and 3 are

stored in third highest priority queue (queue priority 2).

5. VALN tagged frames with “Priority code point (PCP)” value of 1 and 2 are

stored in lowest priority queue (queue priority 3).

QoS rules are under the “ETHERNET_QOS” define in the “switch_MII_Rcv.p” file.

Page 34 of 54 Document Version 1.5

ICSS Cut-Through Switch

4.1.8 Transmit Task design

4.1.8.1 Transmit Task design

Transmit task scans the send queues to determine whether there is a frame to be

transmitted. It first looks at the highest priority queue and if it is empty then only

checks the lower priority queues. If all the send queues are empty then it returns to

the scheduler.

Whenever Tx task is entered then first it checks XMT_active to determine whether

there is an ongoing transmission of a frame and if it is set then Tx task fills the next

bytes into the Tx Fifo. If XMT_active is clear then send queues are looked up to find

whether there is a frame to transmit.

If there is a frame to be transmitted then it initializes the Tx context. Following are

the main parameters in the Tx context:

6. BUFFER_INDEX : Offset address of the data buffer in L3 RAM which contains

first 32 bytes of the frame.

7. Packet_Length: Length of the transmit frame in number of bytes.

8. BYTE_CNT: Number of bytes already pushed to the Tx Fifo for the transmit

frame.

9. BUFFER_DESC_OFFSET: Offset of the first buffer descriptor for the transmit

frame. First buffer descriptor contains the length of transmit frame.

10. BASE_BUFFER_DESC_OFFSET: Offset of the base buffer descriptor of the

queue in which transmit frame is queued.

11. BUFFER_OFFSET: Offset of the base data buffer in the L3 RAM for the send

queue.

12. TOP_MOST_BUFFER_INDEX: Offset of the top most data buffer in the L3 RAM

for the send queue.

13. TOP_MOST_BUFFER_DESC_OFFSET: Offset of the top most buffer descriptor

of the send queue.

Tx context is initialized in the beginning and updated throughout the transmission of

the frame. When Tx task enters it reads in the Tx context from the scratch pad and

saves it back before it exits. Offset’s of the top most buffer descriptor and data

buffer are used to quickly determine if there is a wrap around in the send queue.

Tx Task is partitioned into following three parts:

4. XMT_FB

5. XMT_NB

6. XMT_LB

XMT_FB: Transmit First Block

This block of code first checks in the highest priority queue whether there is a frame

to be transmitted. If not, then it checks in second highest priority and so on. Once it

finds a pending frame then it initializes the Tx context and set’s the XMT_active bit.

Page 35 of 54 Document Version 1.5

ICSS Cut-Through Switch

It fetches the first 32 bytes of transmit frame from the L3 RAM and pushes this data

in the TX Fifo. After pushing first two bytes into the Tx Fifo, it enables transmit of the

frame so that frame transmission can start as soon as possible.

After pushing first 32 bytes of data, it checks whether RX EOF event has occurred or

not. If this event has not occurred then it fetches next block of data and pushes

further 24 bytes into the Tx Fifo. Idea is to start with a completely filled TX Fifo so

that there is more time for PRU to come back and fill Tx Fifo.

Page 36 of 54 Document Version 1.5

ICSS Cut-Through Switch

 Figure 8 : Transmit First Block

Page 37 of 54 Document Version 1.5

ICSS Cut-Through Switch

XMT_NB: Transmit Next Block

This block of code fetches and transmit’s rest of the frame apart from the last 32

bytes of data. It computes the Tx Fifo fill level using the IEP counter and fills the

available free space in Tx Fifo with the subsequent data of the frame. Maximum it

fills 32 bytes of data.

 Figure 9 : Transmit Next Block

XMT_LB: Transmit Last Block

This block is executed when there are 32 bytes or less to be transmitted. After

pushing the remaining bytes into the Tx Fifo, it also pushes the CRC for the frame. It

also updates the read pointer in the queue to indicate that frame has been

transmitted.

Page 38 of 54 Document Version 1.5

ICSS Cut-Through Switch

 Figure 10 : Transmit Last Block

Page 39 of 54 Document Version 1.5

ICSS Cut-Through Switch

4.1.9 Queue Contention Task Design

Queue contention happens when two PRU or a PRU and Host want to acquire the

same queue at same time. There is a defined queue arbitration scheme according to

which ownership of queue is allocated when two PRU or a PRU and host try to

acquire same queue.

Queue arbitration scheme defines a Master and a Slave. A core can be Master or

Slave depending on the scenario. Below are definitions of Master and Slave:

Master:

Master first checks the slave ownership bit. If this bit is set then it means that slave

has already acquired the queue. Master then acquires the Shadow queue and stores

the frame in Shadow queue. If the Slave ownership bit is clear then Master sets the

master ownership bit and acquires the queue.

Slave:

Slave first checks the master ownership bit. If this bit is set then it means that

master has already acquired the queue. It then acquires the Shadow queue and

stores the frame in Shadow queue. If Slave finds the master ownership bit as clear

then it sets the Slave ownership bit and reads again the master ownership bit to

check that master didn’t acquire the queue in-between. If the master has acquired

the queue in-between then slave releases the queue by clearing the slave ownership

bit. Slave then acquires the shadow queue and stores the packet in it.

In the queue descriptor there is a separate ownership bit for master and slave. These

bits are in separate bytes.

As per the scheme, below cores are the defined masters and slave with respect to

the queues:

 Host Queues: PRU0 is master and PRU1 is slave.

 Port Queues: PRUx is master and Host is slave.

Queue Contention on Host Queue:

Queue contention happens on a host queue when both the PRU’s try to acquire a

queue to store the frame at the same time. Only one PRU can hold the queue at one

point of time. Following are possible scenarios:

1. PRU0 is already holding the queue then PRU1 stores the frame in shadow

queue.

2. PRU1 is already holding the queue then PRU0 stores the frame in shadow

queue.

3. Queue is free and both PRU’s try to acquire it by calling the arbitration

function. PRU0 competes as master and PRU1 competes for the queue as

slave. Depending on the relative timing between the two PRU’s one will

successfully acquire the main queue whereas the other one will acquire

the shadow queue.

Page 40 of 54 Document Version 1.5

ICSS Cut-Through Switch

 Figure 11 : Host Queue Contention Scenario

Queue Contention on Port Queue:

Queue contention happens on a port queue when Host and PRU try to acquire a

queue to store the frame at the same time. This can happen on the queues of both

the ports:

 On Port1, contention can happen between Host and PRU1.

 On Port2, contention can happen between Host and PRU0.

As per the scheme, Host is always a slave and PRUx is always a master when

competing for a port queue. PRU’s call a separate arbitration function to acquire the

port queue. A separate function is needed because with respect to port queues both

PRU’s act as master.

Page 41 of 54 Document Version 1.5

ICSS Cut-Through Switch

 Figure 12 : Port queue contention scenario

Queue Contention Resolution

When queue contention happens then one of the core will store/queue the frame in

the shadow buffer. Frame stored in the shadow buffer has to be moved to the main

queue. Host always receives the frames through the four host queues and frames

are always transmitted from the four send queues on both the ports. There is queue

contention task which resolves the queue contention and moves the frame from the

shadow buffer to one of the four main queue’s depending on the priority of the

frame. Queue contention task runs on both the PRU’s:

 Queue contention task on PRU0 resolves contention for Host port and Port2.

 Queue contention task on PRU1 resolves contention for Port1.

So, if there is frame waiting in shadow buffer of Port1 then it is moved to one of the

send queue of Port1 by the PRU1. This distribution of queue contention resolution to

two PRU’s helps in resolving the queue contentions quickly.

This task checks the queue contention status register to find whether it has to

resolve a queue contention. If there is no contention to resolve then it transfers the

control back to the micro scheduler. There is one byte each for the three ports in the

queue contention status register. If there is a queue contention then this task clears

the contention in status register after it has successfully resolved it.

Shadow buffer can have maximum one frame at a time. If a queue contention

happens and new a frame has to be stored in shadow buffer while it is the already

holding a frame then the new frame is dropped.

Page 42 of 54 Document Version 1.5

ICSS Cut-Through Switch

PRU has to acquire the main queue before queue contention can be resolved. As per

the scheme, PRU is designated as master while it resolves the queue contention. For

example, PRU1 acquires the one of the send queue on Port1 as master when it

moves a frame from the shadow buffer to the send queue. At this point of time if

host wants to queue a frame in the same send queue then it will have to drop the

frame. It can’t store the frame in shadow buffer as well because it is already holding

a frame which is being moved to the send queue.

Page 43 of 54 Document Version 1.5

ICSS Cut-Through Switch

4.1.10 Statistics Task

Statistics on PRU

The statistics task is called by the scheduler periodically in a round robin manner

along with RX and TX task. The stat task checks for two flags RX_STAT_PEND and

TX_STAT_PEND which are in turn set by the RX and TX task respectively (The flags

are only set for non-error frames). Inside the stat task regular counters like

multicast/broadcast/unicast counters along with binning counters are updated. Error

cases like CRC count, oversize, undersize frames, Rx Error, SFD Error, Dropped

frames etc are not part of the stat task. These counters are incremented wherever

and wherever the error is detected. In addition to this Half Duplex counters like late

collision, excess collision are also not part of the stat task.

The statistics memory map is shown in section 4.1.2.5.

Besides these statistics the firmware does binning (segregating based on size of

packet) of Rx and Tx frames.

In the new design firmware does most of the statistics and all counters except one

on Host are redundant. They are left there to help in debugging. The one counter

exclusive to Host is the rxUnknownProtocol.

Page 44 of 54 Document Version 1.5

ICSS Cut-Through Switch

4.1.11 Storm Prevention

Storm prevention is primarily done on PRU’s using a credit based scheme. It is

explained below.

 The Host (Cortex A8) writes the number of Multicast+Broadcast packets

allowed in a 100ms interval in DRAM of PRU. (STORM_PREVENTION_OFFSET)

 This value (credits) can be configured using the API setCreditValue()

 As soon as the PRU encounters a Multicast/Broadcast packet it decrements

the value written in memory by 1 and allows the packet to pass through. If

the value goes to 0 the packet is dropped

 At the end of every 100ms interval Cortex A8 writes the value once again.

Function resetStormPreventionCounter() in file icss_StormControl.c

 Storm Control can be enabled and disabled on a per port basis.

 List of API’s (Mentioned in switch API doc in section 2.2)

Page 45 of 54 Document Version 1.5

ICSS Cut-Through Switch

4.1.12 Learning Bridge

 The learning bridge is implemented on the Host (Cortex A8) side. The switch

learns source addresses of packets that are either Multicast/Broadcast or

directed at the Host (Unicast with Host MAC ID).

 All API’s are contained in the file icss_learning.c. When a packet is received

on the Host using the RX Interrupt mechanism explained above in this
document the function updateHashTable() is called for that packet with the

correct port number. The function adds an entry for the MAC ID and updates

the table.

 To retrieve the port number on which that particular MAC ID was present, the

API findMAC() is called.

 Ageing is done automatically by the function incrementCounter() and

ageingRoutine() (Called inside the driver periodically)

 List of API’s (Mentioned in switch API doc in section 2.2)

Page 46 of 54 Document Version 1.5

ICSS Cut-Through Switch

4.2 STP Switch

In addition to the above features, the source is packaged with an STP-aware switch.

This STP-aware switch will be built into its own binaries, but is built directly atop the

base ICSS Cut-Through Switch.

4.2.1 Memory Map

Additional memory regions will be used for RSTP as follows

4.2.1.1 PRU0 DMEM memory map

Definition Address map Remarks

ICSS_EMAC_FW_VLAN_FILTER_CTRL_BIT
MAP_OFFSET

0x00EF VLAN Filter Control

ICSS_EMAC_FW_VLAN_FILTER_DROP_CN
T_OFFSET

0x00F0 VLAN Filter Drop count

ICSS_EMAC_FW_MULTICAST_FILTER_MA
SK_OFFSET

0x00F4 Multicast filter Mask (6 bytes)

ICSS_EMAC_FW_MULTICAST_FILTER_CT
RL_OFFSET

0x00FA Multicast filter feature control

ICSS_EMAC_FW_MULTICAST_FILTER_OV
ERRIDE_STATUS

0x00FB Multicast filter override for Hash
override

ICSS_EMAC_FW_MULTICAST_FILTER_DR
OP_CNT_OFFSET

0x00FC Multicast filter drop count

ICSS_EMAC_FW_MULTICAST_FILTER_TA
BLE

0x0100 Multicast filter table, 256 bytes

ICSS_EMAC_FW_VLAN_FILTER_TABLE_SI
ZE_BYTES

0x0200 Vlan filter table 512 bytes

STP_INVALID_STATE_OFFSET 0x1FAC STP state error counter

4.2.1.2 PRU1 DMEM memory map

Definition Address map Remarks

ICSS_EMAC_FW_VLAN_FILTER_CTRL_BIT
MAP_OFFSET

0x00EF VLAN Filter Control

ICSS_EMAC_FW_VLAN_FILTER_DROP_CN
T_OFFSET

0x00F0 VLAN Filter Drop count

ICSS_EMAC_FW_MULTICAST_FILTER_MA
SK_OFFSET

0x00F4 Multicast filter Mask (6 bytes)

ICSS_EMAC_FW_MULTICAST_FILTER_CT
RL_OFFSET

0x00FA Multicast filter feature control

ICSS_EMAC_FW_MULTICAST_FILTER_OV
ERRIDE_STATUS

0x00FB Multicast filter override for Hash
override

ICSS_EMAC_FW_MULTICAST_FILTER_DR
OP_CNT_OFFSET

0x00FC Multicast filter drop count

ICSS_EMAC_FW_MULTICAST_FILTER_TA
BLE

0x0100 Multicast filter table, 256 bytes

ICSS_EMAC_FW_VLAN_FILTER_TABLE_SI
ZE_BYTES

0x0200 Vlan filter table 512 bytes

STP_INVALID_STATE_OFFSET 0x1FAC STP state error counter

4.2.1.3 ICSS Shared RAM memory map

Definition Address map Remarks

ICSS_EMAC_FW_FDB__IDX_TBL_OFFSET 0x2000 FDB Index Table

ICSS_EMAC_FW_FDB__MAC_TBL_OFFSE 0x2400 FDB MAC Table

Page 47 of 54 Document Version 1.5

ICSS Cut-Through Switch

T

ICSS_EMAC_FW_FDB__STP_P1_STP_STA
TE_OFFSET

0x2E00 Port 1 STP state

ICSS_EMAC_FW_FDB__STP_P2_STP_STA
TE_OFFSET

0x2E01 Port 2 STP state

ICSS_EMAC_FW_FDB__FLOOD_ENABLE_
FLAGS_OFFSET

0x2E02 Flood enable flags per-port (bit0 ->
Host, bit1 -> Port 1, bit2 → Port 2

ICSS_EMAC_FW_FDB__ARBITRATION_OF
FSET

0x2E03 FDB locking mechanism

4.2.2 Buffer Descriptor

Additional bits will be used for RSTP within the Buffer Descriptor as follows

Bit(s) Name Meaning

6 FdbLookupSuccess FDB lookup was successful (source MAC address found in

FDB)

7 Flood Packet should be flooded (destination MAC address found in

FDB)

4.2.3 R22

Additional bits will be used for RSTP within the Buffer Descriptor as follows

Bit(s) Name Meaning

6 FDB_LOOKUP_SUCCESS FDB lookup was successful (source MAC address found in

FDB)

3 PKT_FLOODED Packet should be flooded (destination MAC address found
in FDB)

0..2 STP_STATE The current STP state for this port

4.2.4 STP Support

4.2.5 Forwarding Data Base

The design of the FDB table is heavily influenced by the NodeTable design in

HSR/PRP firmware and the current implementation of the FDB in

icss_emacLearning.h. Once an address has sent traffic through the switch, the switch

knows that this address is associated with a particular port and will then "learn" the

address. In short, the FDB stores learned Unicast MAC addresses to speed up the

forwarding of packets to known addresses. This is to be implemented in firmware to

avoid overloading the host and to minimize overall latency during high-traffic with

known addresses.

4.2.5.1 Linear Hash Table

This linear hash table is primarily based on the current HSR/PRP linear hash table

design for the Node Table. The design handles clashes with expandable buckets,

which provides more flexibility but more clashes lead to longer bucket-search times

with the worst case resulting in an O(N) linear search in the case where all MACs are

hashed to the same id. If bucket-insertions are maintained to be sorted, then binary

https://confluence.itg.ti.com/display/SITARA/Move+Node+Table+implementation+to+Host
https://confluence.itg.ti.com/display/SITARA/Move+Node+Table+implementation+to+Host
https://confluence.itg.ti.com/display/SITARA/Move+Node+Table+implementation+to+Host

Page 48 of 54 Document Version 1.5

ICSS Cut-Through Switch

search can be used to find a value in a bucket. The 8-bit hash limits the total number

of buckets to 256, but in theory it is possible to have arbitrary-length buckets.

The design actually consists of two tables: and Index Table and a MAC Table. The

MAC Table stores all of the proper MAC addresses and relevant information in

buckets, and the Index Table keeps track of the location and size of the buckets

within the MAC Table. Each bucket in the MAC Table is a sorted, contiguous group of

MACs that share the same hash value.

/**

 * Fdb - Forwarding Data Base

 * Stores learned MAC addresses in a linearly expandable hash table represented

 * as an Index Table and a MAC Table (see implementations for details) for RSTP.

 * Tracks the RSTP state. All elements are pointers in case they need to be

 * broken up memory.

 */

typedef struct Fdb_s {

 FdbIndexTable *indexTbl; /* FDB Index Table */

 FdbMacTable *macTbl; /* FDB MAC Table */

 RstpState *state[TOTAL_NUM_PORTS] /* RSTP State */

 FdbArbitration *locks /* FDB Locks */

 uint16_t totalNumEntries; /* Total number of entries in the hash table */

} Fdb;

4.2.5.2 Basic Example

In this basic illustrative example, there are 3 hash buckets in the table associated

with the hash values 0x00, 0x02, and 0xFD. The index table tracks the size and

starting index of each bucket, and empty buckets have a size of 0 with a dont-care

index value.

4.2.5.3 Index Table

As mentioned, the Index Table must be 256 entries to ensure easy indexing with the

8-bit hash. It also keeps track of the current state of each port. The current design

uses 16-bit bucket indices and bucket entry counts to support up to a 65,536 entry

MAC table.

Page 49 of 54 Document Version 1.5

ICSS Cut-Through Switch

/**

 * FdbIndexTable - FDB Index Table

 * Hashable FDB table, contains entries that point to buckets of

 * learned MAC addresses.

 */

typedef struct FdbIndexTable_s {

 /* Array of Index Table entries (256 entries) */

 FdbIndexTableEntry entries[FDB_INDEX_TBL_MAX_ENTRIES];

} FdbIndexTable;

/**

 * FdbIndexTableEntry - FDB Index Table Entry

 * Each entry points to a bucket of learned MAC addresses in the FDB Table.

 * Upon collision, the buckets will dynamically re-size to accommodate the

 * new address. These entries are fully in charge of bucket geometry,

 * thus bucket size is also tracked here.

 */

typedef struct FdbIndexTableEntry_s {

 uint16_t bucketIndex; /* Bucket Table index of first Bucket with this

 MAC address */

 utin16_t numBucketEntries; /* Number of entries in this bucket */
} FdbIndexTableEntry;

4.2.5.4 MacTable

The MAC table where the actual FDB entries are stored, hash buckets appear as

contiguously linear groups of entries.

Page 50 of 54 Document Version 1.5

ICSS Cut-Through Switch

/**

 * FdbMacTable - FDB MAC Table

 * This table contains the actual MAC information managed by the FDB Index Table.

 */

typedef struct FdbMacTable_s {

 FdbMacInfo entries[FDB_MAC_TBL_MAX_ENTRIES]; /* Array of MAC Info entries */

} FdbMacTable;

/**

 * FdbMacInfo - FDB MAC Info

 * All relevant information related to a particular MAC address.

 */

typedef struct FdbMacInfo_s {

 MAC mac; /* MAC Address */

 uint16_t age; /* Age of MAC entry in table */

 uint8_t portNo; /* MAC address port, zero-indexed (portNo=0 means Port 1) */

 uint8_t isStatic : 1; /* Flag to indicate whether address added

 statically or dynamically */

 uint8_t active : 1; /* Flag to indicate whether this entry is currently

 active in the table */
} FdbMacInfo;

4.2.5.5 STP Support

The firmware will technically be blindly supporting STP states which are, in effect, a superset

of states that include all valid RSTP states. If the host determines it will be running RSTP, it

will only configure the firmware in the subset of states that are considered RSTP. If the state

is incorrectly configured, the firmware will drop all packets and log error statistics. The

functional relationship between STP and RSTP states are as follows:

STP State
RSTP

State
Configuration

Receive

BPDU

Learn

MAC

Forward

Packets

Disabled Discarding
Disable port, state not

relevant
No No No

Blocking Discarding Host sends Blocking Yes No No

Listening Discarding Host sends Blocking Yes No No

Learning Learning Host sends Learning Yes Yes No

Page 51 of 54 Document Version 1.5

ICSS Cut-Through Switch

Forwarding Forwarding
Host sends

Forwarding
Yes Yes Yes

4.2.5.6 PTP

The STP switch will support PTP as described in the ICSS-EMAC documentation.

4.2.5.7 RX Interrupt Pacing

The STP switch will support RX interrupt pacing as described in the ICSS-EMAC documentation.

4.2.5.8 Multicast/VLAN Filtering

The STP switch will support Multicast and VLAN filtering as described in the ICSS-EMAC
documentation.

Page 52 of 54 Document Version 1.5

ICSS Cut-Through Switch

Firmware sources description

ICSS Switch firmware source includes the following files:

Source File Remarks

firmware_version.h ICSS Switch Firmware Version Control

icss_defines.h ICSS Global Defines

icss_switch_macros.h ICSS Switch Macros and Defines

switch_collision_task.asm ICSS Switch collision handling Functions

icss_iep_reg.h ICSS Industrial Ethernet Peripheral Registers Definition

icss_intc_reg.h ICSS Interrupt Controller Module Registers Definition

icss_macros.h Implements Common Macros & Defines

icss_miirt_regs.h ICSS MII_RT Module Registers Definition

icss_emacSwitch.h Definitions and Mapping of Ethernet MAC over PRU

micro_scheduler.h ICSS Defines and Macros used by Micro_Scheduler

micro_scheduler.asm Round-robin based Micro_Scheduler which controls program flow

emac_MII_Rcv.h Defines and Macros to be used in Receive Task

emac_MII_Rcv.asm Receive Task Functions

emac_MII_Xmt.h Defines and Macros to be used in Transmit Task

emac_MII_Xmt.asm Transmit Task Functions

emac_statistics.asm Statistics Task

icss_stp_switch.h STP Switch memory map and constants definitions

icss_stp_switch_macros.h STP Switch macros

Table 11. Firmware Sources Description

Page 53 of 54 Document Version 1.5

ICSS Cut-Through Switch

5 Revision History

Version # Date Author Name Revision History

0.1 11 JUNE 2013 Robin Singh

First Draft

0.2 23rd July 2014 Robin Singh Made modifications to align

with latest firmware

0.3 24th July 2014 Robin Singh Incorporated review

comments

0.4 25th July 2014 Vineet Roy Incorporated review

comments

1.0 25th July 2014 Robin Singh

Final document which aligns

with latest switch firmware.

1.1 2nd Jan 2014 Vineet Roy 1. Modified the memory map

based on recent changes and

modified statistics task

2. Modified the statistics task

section

3. Added section on half

duplex

4. Added section on Link

Status Change

5. Added section on PTP

1.2 11-Feb-2014 Vineet Roy Added section on Buffer and

Queue Descriptors

1.3 6-September-

2017

Suraj Das Modified the documentation

for Proc SDK release.

1.4 16-Apr-2018 Aravind Batni Added note for bit 20 of

RX_EOF on why it can’t be

used for AM335x and AM437x

1.5 14-Oct-2019 Brandon Wetzel 1. Addition of STP Switch

design, memory map, etc.

2. Retroactively fix previously

changed memory map

3. Retroactively fix buffer

descriptor usage

4. Retroactively fix R22 usage

5. Updated TI Germantown

address

6. Preparation for release with

PRSDK 6.2

Page 54 of 54 Document Version 1.5

ICSS Cut-Through Switch

««« § »»»

