

Document Version 1.0

Page 1 of 58

ICSS DUAL EMAC FIRMWARE DESIGN GUIDE

ICSS based Dual Ethernet MAC

Applies to Product Release: 01.00.00.16
Publication Date: January 14, 2020

Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0

Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative

Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2011-2020 Texas Instruments Incorporated - http://www.ti.com/

Texas Instruments, Incorporated

20250 Century Boulevard

Germantown, MD 20874 USA

Page 2 of 58 Document Version 1.0

ICSS Ethernet MAC

This document is intended for users who are interested in getting more detailed

understanding of the firmware design. It discusses ICSS based EMAC firmware

implementation details along with any features added on top of the basic EMAC firmware.

It mentions the memory maps, structures and software design flow of the firmware.

Note: Those who just want to use ICSS EMAC firmware may not need to go

through this document.

Page 3 of 58 Document Version 1.0

ICSS Ethernet MAC

Contents

ICSS based Dual Ethernet MAC ... 1

Contents ... 3

List of Figures .. 4

List of Tables .. 5

1 Requirements ... 6

1.1 EMAC High Level Requirements .. 6

1.2 Implementation Constraints .. 6

2 Design Description ... 7

2.1 System Decomposition Diagram ... 7

3 Firmware Detailed Design .. 8

3.1 Firmware Architecture Overview ... 8

3.1.1 Architecture and Design .. 8

3.1.2 PRU0/1 DMEM and ICSS Shared RAM Memory Map for EMAC Firmware 9

3.1.3 Scratchpad Usage Design .. 14

3.1.4 PRU Register Usage Design ... 16

3.1.5 Micro Scheduler Task Design ... 17

3.1.6 Receive Task Design ... 20

3.1.7 Buffer Descriptors, Queue Descriptors and Receive Context 25

3.1.8 Quality of Service (QoS).. 27

3.1.9 Transmit Task design .. 28

3.1.10 Statistics Task ... 31

3.1.11 Storm Prevention ... 32

3.1.12 Half Duplex Support ... 32

3.1.13 Link Status Change detection ... 32

3.1.14 EMAC Time Triggered Send ... 33

3.1.15 EMAC Multicast Filtering .. 43

3.1.16 EMAC VLAN Filtering ... 45

3.1.17 EMAC PTP support .. 49

3.1.18 Rx Interrupt Pacing .. 53

3.2 Firmware Sources Description .. 57

4 Revision History ... 58

Page 4 of 58 Document Version 1.0

ICSS Ethernet MAC

List of Figures

Figure 1: Software Architecture .. 7

Figure 2: System Decomposition Diagram ... 7

Figure 3: EMAC Firmware High Level Architecture .. 8

Figure 4: Micro Scheduler Flow Chart .. 19

Figure 5: Round-robin approach followed by MS ... 19

Figure 6: RCV_FB Flow Chart .. 22

Figure 7: RCV_NB Flow Chart .. 23

Figure 8: RCV_LB Flow Chart... 24

Figure 9: XMT_FB Flow Chart .. 29

Figure 10: XMT_NB Flow Chart .. 30

Figure 11: XMT_LB Flow Chart .. 30

Figure 12: Time Triggered Send Overview ... 33

Figure 13: TTS Flow Chart (Part 1) ... 39

Figure 14: TTS Flow Chart (Part 2) ... 40

Figure 15: Incorrect Cyclic Packet Transmission in TTS .. 42

Figure 16: Time Availability Check in TTS .. 43

Figure 17: Operational Overview .. 44

Figure 18: VLAN Overview.. 46

Figure 19: Operational Overview .. 48

Page 5 of 58 Document Version 1.0

ICSS Ethernet MAC

List of Tables

Table 1: High Level Requirements .. 6

Table 2: PRU0 and PRU1 DMEM Memory Map ... 9

Table 3: ICSS Shared RAM Memory Map .. 10

Table 4: L3 OCMC RAM Memory Map ... 11

Table 5: Statistics Offsets ... 13

Table 6: Scratchpad Register Usage .. 14

Table 7: PRU Register Usage ... 16

Table 8: Buffer Descriptor Bits .. 25

Table 9: Queue Descriptor Bits ... 25

Table 10: TTS Source Code Files List .. 33

Table 11: TTS R22 Bits Usage ... 34

Table 12: TTS Control Variables ... 35

Table 13: TTS Memory Map ... 35

Table 14: TTS Status Bits ... 36

Table 15: TTS Functions ... 37

Table 16: TTS Compare Register Usage .. 41

Table 17: Multicast filtering Source code Files List ... 44

Table 18: Multicast filtering Control variables ... 45

Table 19: Multicast filtering Memory map ... 45

Table 20: VLAN filtering Source Code Files List ... 47

Table 21: VLAN filtering Control variables .. 47

Table 22: VLAN filtering Memory map .. 47

Table 23: VLAN Filtering expected Results .. 49

Table 24: PTP Source Code Files List .. 50

Table 25: PTP Control variables ... 52

Table 26: Rx Interrupt Pacing Source Code Files List .. 54

Table 27: Rx Interrupt Pacing Parameters .. 54

Table 28: ICSS EMAC Macros ... 56

Table 29: Firmware Sources Description .. 57

Table 30: Revision History .. 58

Page 6 of 58 Document Version 1.0

ICSS Ethernet MAC

1 Requirements

1.1 EMAC High Level Requirements

Requirements Remarks

1 ms buffering per port Supported

Host IRQ Supported

Ethernet QoS

Supported

With 2 queues instead of 8. So, it is not a standard Ethernet QoS

implementation.

Statistics Supported

Storm Prevention Supported

Table 1: High Level Requirements

1.2 Implementation Constraints

Implementation constraints are as follows:

1. Hardware timer resolution is 5 nsec @ IEP clock of 200 MHz, Timer register are updated

in jumps of 5 @ each tick (except during clock synchronization) to emulate a 1nSec

granularity.

2. Only frames with 8 bytes of preamble are supported.

Page 7 of 58 Document Version 1.0

ICSS Ethernet MAC

2 Design Description

This section discusses the overall flow & interaction of EMAC Firmware.

Figure 1: Software Architecture

2.1 System Decomposition Diagram

Figure 2: System Decomposition Diagram

Host Application

ICCS EMAC LLD

PRUSS LLD

Page 8 of 58 Document Version 1.0

ICSS Ethernet MAC

3 Firmware Detailed Design

3.1 Firmware Architecture Overview

3.1.1 Architecture and Design

Figure 3: EMAC Firmware High Level Architecture

1. Host Core functions (ARM, DSP)

i. Run Host Application

ii. EMAC Initializations

2. PRU0 functions

i. Receive and transmit frames on Port 1

ii. Statistics for received and transmitted frames on Port1

3. PRU1 functions are exactly symmetrical to PRU0.

HOST CORE

Page 9 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.2 PRU0/1 DMEM and ICSS Shared RAM Memory Map for EMAC Firmware

3.1.2.1 PRU0 and PRU1 DMEM Memory Map

Memory map usage for DRAM in EMAC is identical for both PRUs and is as shown below.

Definition Offset Remarks

Reserved
0x0000 to

0x00EF
Reserved for future use.

ICSS_EMAC_FW_VLAN_FILTER_CTRL_BITMAP_OFFSET 0x00EF VLAN Filter Control

ICSS_EMAC_FW_VLAN_FILTER_DROP_CNT_OFFSET 0x00F0 VLAN Filter Drop count

ICSS_EMAC_FW_MULTICAST_FILTER_MASK_OFFSET 0x00F4
Multicast filter Mask (6

bytes)

ICSS_EMAC_FW_MULTICAST_FILTER_CTRL_OFFSET 0x00FA
Multicast filter feature

control

ICSS_EMAC_FW_MULTICAST_FILTER_OVERRIDE_STATUS 0x00FB
Multicast filter override

for Hash override

ICSS_EMAC_FW_MULTICAST_FILTER_DROP_CNT_OFFSET 0x00FC
Multicast filter drop

count

ICSS_EMAC_FW_MULTICAST_FILTER_TABLE 0x0100
Multicast filter table, 256

bytes

ICSS_EMAC_FW_VLAN_FILTER_TABLE_SIZE_BYTES 0x0200
Vlan filter table 512

bytes

Protocol Specific
0x0400 to

0x1E97

Available for protocol

specific usage.

ICSS_EMAC_TTS_CYCLE_START_OFFSET 0x1E98

Time Triggered Send

related offsets. For

details refer EMAC Time

Triggered Send section.

ICSS_EMAC_TTS_CYCLE_PERIOD_OFFSET 0x1EA0

ICSS_EMAC_TTS_CFG_TIME_OFFSET 0x1EA4

ICSS_EMAC_TTS_STATUS_OFFSET 0x1EA8

ICSS_EMAC_TTS_MISSED_CYCLE_CNT_OFFSET 0x1EAC

ICSS_EMAC_TTS_PREV_TX_SOF 0x1EB0

ICSS_EMAC_TTS_CYC_TX_SOF 0x1EB8

PORT_QUEUE_DESC_OFFSET 0x1EC0
Port queue descriptors

for 4 port queues.

Q1_TX_CONTEXT_OFFSET 0x1EE0

Transmit context for the

priority 0 transmit queue

on Port 1/2.

Q2_TX_CONTEXT_OFFSET 0x1EE8

Transmit context for the

priority 1 transmit queue

on Port 1/2.

Q3_TX_CONTEXT_OFFSET 0x1EF0

Transmit context for the

priority 2 transmit queue

on Port 1/2.

Q4_TX_CONTEXT_OFFSET 0x1EF8

Transmit context for the

priority 3 transmit queue

on Port 1/2.

Statistics

0x1F00

to

0x1FA8

EMAC Statistics for PRU

are stored in this

memory space.

Free space
0x1FA9

to 0x2000

This memory space is

free.

Table 2: PRU0 and PRU1 DMEM Memory Map

Page 10 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.2.2 ICSS Shared RAM Memory Map

Below are offset addresses of the buffer descriptors for the default configuration of queue sizes.

Definition Offset Remarks

Reserved
0x0000 to

0x03FF
Reserved for future use.

P0_Q1_BD_OFFSET 0x0400
Buffer descriptors for the priority 0 host

receive queue.

P0_Q2_BD_OFFSET 0x0708
Buffer descriptors for the priority 1 host

receive queue.

P0_Q3_BD_OFFSET 0x0A10
Buffer descriptors for the priority 2 host

receive queue.

P0_Q4_BD_OFFSET 0x0D18
Buffer descriptors for the priority 3 host

receive queue.

P1_Q1_BD_OFFSET 0x1020
Buffer descriptors for the priority 0

transmit queue on Port 1.

P1_Q2_BD_OFFSET 0x11A4
Buffer descriptors for the priority 1

transmit queue on Port 1.

P1_Q3_BD_OFFSET 0x1328
Buffer descriptors for the priority 2

transmit queue on Port 1.

P1_Q4_BD_OFFSET 0x14AC
Buffer descriptors for the priority 3

transmit queue on Port 1.

P2_Q1_BD_OFFSET 0x1630
Buffer descriptors for the priority 0

transmit queue on Port 2.

P2_Q2_BD_OFFSET 0x17B4
Buffer descriptors for the priority 1

transmit queue on Port 2.

P2_Q3_BD_OFFSET 0x1938
Buffer descriptors for the priority 2

transmit queue on Port 2.

P2_Q4_BD_OFFSET 0x1ABC
Buffer descriptors for the priority 3

transmit queue on Port 2.

HOST_Q1_RX_CONTEXT_OFFSET 0x1C40
Receive context for the priority 0 host

receive queue.

HOST_Q2_RX_CONTEXT_OFFSET 0x1C48
Receive context for the priority 1 host

receive queue.

HOST_Q3_RX_CONTEXT_OFFSET 0x1C50
Receive context for the priority 2 host

receive queue.

HOST_Q4_RX_CONTEXT_OFFSET 0x1C58
Receive context for the priority 3 host

receive queue.

HOST_QUEUE_DESCRIPTOR_OFFSET_ADDR 0x1C60
Table for host buffer descriptor base

offsets for 4 host queues.

HOST_QUEUE_OFFSET_ADDR 0x1C68
Table for host buffer base offsets for 4

host queues.

HOST_QUEUE_SIZE_ADDR 0x1C70
Table for queue sizes of host, port 1

and port 2.

HOST_QUEUE_DESC_OFFSET 0x1C80
Host queue descriptors for 4 host

queues.

Protocol Specific
0x1CA0 to

0x1F9F
Available for protocol specific usage.

Free space
0x1FA0 to

0x3000
This memory space is free.

Table 3: ICSS Shared RAM Memory Map

Page 11 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.2.3 L3 OCMC RAM Memory Map

Below are offset addresses of the queue data buffers for the default configuration of queue sizes.

Since the queue sizes are configurable, offset addresses will automatically change when the size

of one or more queue is changed.

Definition Offset Remarks

P0_Q1_BUFFER_OFFSET 0x0000 Offset of data buffers of first priority host queue in L3 RAM

P0_Q2_BUFFER_OFFSET 0x1840
Offset of data buffers of second priority host queue in L3

RAM

P0_Q3_BUFFER_OFFSET 0x3080 Offset of data buffers of third priority host queue in L3 RAM

P0_Q4_BUFFER_OFFSET 0x48C0 Offset of data buffers of fourth priority host queue in L3 RAM

P1_Q1_BUFFER_OFFSET 0x6100 Offset of data buffers of first priority Port1 queue in L3 RAM

P1_Q2_BUFFER_OFFSET 0x6D20
Offset of data buffers of second priority Port1 queue in L3

RAM

P1_Q3_BUFFER_OFFSET 0x7940 Offset of data buffers of third priority Port1 queue in L3 RAM

P1_Q4_BUFFER_OFFSET 0x8560 Offset of data buffers of fourth priority Port1 queue in L3 RAM

P2_Q1_BUFFER_OFFSET 0x9180 Offset of data buffers of first priority Port2 queue in L3 RAM

P2_Q2_BUFFER_OFFSET 0x9DA0
Offset of data buffers of second priority Port2 queue in L3

RAM

P2_Q3_BUFFER_OFFSET 0xA9C0 Offset of data buffers of third priority Port2 queue in L3 RAM

P2_Q4_BUFFER_OFFSET 0xB5E0 Offset of data buffers of fourth priority Port2 queue in L3 RAM

Reserved Space
0xC200 to

0xEDFF

Since queue sizes are programmable, this space acts as

buffer if there is need to increase the queue sizes.

Table 4: L3 OCMC RAM Memory Map

Page 12 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.2.4 Statistics memory map

This is common to both PRU0 and PRU1, DRAM0 stores statistics for PRU0 and DRAM1 for

PRU1.

Definition Offset Remarks

TX_BC_FRAMES_OFFSET

0x1F00 Number of Transmitted Broadcast Frames

TX_MC_FRAMES_OFFSET 0x1F04 Number of Transmitted Multicast Frames

TX_UC_FRAMES_OFFSET 0x1F08 Number of Transmitted Unicast Frames

TX_BYTE_CNT_OFFSET 0x1F0C Total Number of Bytes transmitted

RX_BC_FRAMES_OFFSET 0x1F10 Number of Received Broadcast Frames

RX_MC_FRAMES_OFFSET 0x1F14 Number of Received Multicast Frames

RX_UC_FRAMES_OFFSET 0x1F18 Number of Received Unicast Frames

RX_BYTE_CNT_OFFSET 0x1F1C Total Number of Bytes received

TX_64_BYTE_FRAME_OFFSET 0x1F20 Number of transmitted packets of size 64 bytes

TX_65_127_BYTE_FRAME_OFFSET 0x1F24
Number of transmitted packets of size between

65-127 bytes.

TX_128_255_BYTE_FRAME_OFFSET 0x1F28
Number of transmitted packets of size between

128-255 bytes.

TX_256_511_BYTE_FRAME_OFFSET 0x1F2C
Number of transmitted packets of size between

256-511 bytes.

TX_512_1023_BYTE_FRAME_OFFSET 0x1F30
Number of transmitted packets of size between

512-1023 bytes.

TX_1024_MAX_BYTE_FRAME_OFFSET 0x1F34
Number of transmitted packets of size greater

than 1023 bytes.

RX_64_BYTE_FRAME_OFFSET 0x1F38 Number of received packets of size 64 bytes

RX_65_127_BYTE_FRAME_OFFSET 0x1F3C
Number of received packets of size between 65-

127 bytes.

RX_128_255_BYTE_FRAME_OFFSET 0x1F40
Number of received packets of size between

128-255 bytes.

RX_256_511_BYTE_FRAME_OFFSET 0x1F44
Number of received packets of size between

256-511 bytes.

RX_512_1023_BYTE_FRAME_OFFSET 0x1F48
Number of received packets of size between

512-1023 bytes.

RX_1024_MAX_BYTE_FRAME_OFFSET 0x1F4C
Number of received packets of size greater than

1023 bytes.

LATE_COLLISION_OFFSET 0x1F50 Number of packets which suffered late collision

SINGLE_COLLISION_OFFSET 0x1F54
Number of bytes which suffered only one

collision

MULTIPLE_COLLISION_OFFSET 0x1F58
Number of bytes which suffered more than one

collision

EXCESS_COLLISION_OFFSET 0x1F5C
Number of bytes which suffered more than 15

collisions

RX_MISALIGNMENT_COUNT_OFFSET 0x1F60 Packets which had an odd number of nibbles

STORM_PREVENTION_COUNTER 0x1F64
Multicast and Broadcast Packets which were

discarded by Storm prevention

RX_ERROR_OFFSET 0x1F68

Number of packets which triggered Rx MAC

errors or number of instances where a MAC error

was detected.

SFD_ERROR_OFFSET 0x1F6C Number of Packets with incorrect preamble.

TX_DEFERRED_OFFSET 0x1F70
Packets which were deferred from transmission

at least once.

Page 13 of 58 Document Version 1.0

ICSS Ethernet MAC

TX_ERROR_OFFSET 0x1F74 Reserved

RX_OVERSIZED_FRAME_OFFSET 0x1F78

Number of packets with byte size greater than

1522. (Default value. This is a programmable

value in MII RT)

RX_UNDERSIZED_FRAME_OFFSET 0x1F7C

Number of packets with byte size less than 64

(including CRC). Packets with size less than 18

are counted as Rx Error.

RX_CRC_COUNT_OFFSET 0x1F80 Number of Packets with CRC/FCS Error.

RX_DROPPED_FRAMES_OFFSET 0x1F84
Number of frames dropped due to link loss/same

dst as host.

TX_OVERFLOW_COUNTER 0x1F88 Number of times TX FIFO overflow occurred.

TX_UNDERFLOW_COUNTER 0x1F8C Number of times TX FIFO underflow occurred.

Table 5: Statistics Offsets

Page 14 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.3 Scratchpad Usage Design

Three shared scratchpads (10, 11 and 12) with 30 registers each between PRU0 and PRU1 are

used for keeping Receive Task and Transmit Task contexts.

Structure for MII TX context scratchpad entry:

.struct MII_TX_DESC

 .u8 flags

.u16 QUEUE_DESC_OFFSET

.u16 BYTE_CNT

.u16 Packet_Length

.u16 BUFFER_DESC_OFFSET

.u16 BUFFER_INDEX

.u16 BUFFER_OFFSET

.u16 TOP_MOST_BUFFER_INDEX

.u16 BASE_BUFFER_DESC_OFFSET

 .u16 TOP_MOST_BUFFER_DESC_OFFSET

.ends

Structure for MII RX context scratchpad entry:

.struct MII_RCV_DESC

 .u8 rx_flags

 .u8 tx_flags

 .u8 rx_flags_extended

 .u8 qos_queue

.u16 byte_cntr

.u16 wrkng_wr_ptr

.u16 rd_ptr

 .u16 buffer_index

 .u16 base_buffer_index

 .u16 rcv_queue_pointer

 .u16 base_buffer_desc_offset

 .u16 top_most_buffer_desc_offset

.ends

Below table shows the allocation of above TX and RCV contexts on the scratchpad:

PRU Core BANK0 BANK1 BANK2

PRU0 TX Context REG 13 to REG 17

PRU1 TX Context REG 13 to REG 17

PRU0 Host RCV Context REG 25 to REG 29

PRU1 Host RCV Context REG 25 to REG 29

Table 6: Scratchpad Register Usage

Page 15 of 58 Document Version 1.0

ICSS Ethernet MAC

Below are defines used for storing and reading context/data from/to the scratchpad and RX L2

FIFO. These are the Bank IDs.

#define BANK0 10

#define BANK1 11

#define BANK2 12

#define RX_L2_BANK0_ID 20

#define RX_L2_BANK1_ID 21

Page 16 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.4 PRU Register Usage Design

Each PRU has 32 registers, from REG 0 to REG 31, out of which REG 30 and REG 31 have

special use and cannot be used by firmware for storing data. Below is the register allocation table

which shows the registers used by various tasks. Since the firmware is symmetrical on both

PRUs, same allocation is true for both PRUs.

R22 is used as a persistent register on both PRU’s. Bits 15-21 are used by Time Triggered Send

implementation while bits 22-31 are used by basic EMAC. Bits 0 to 14 are free for usage by other

protocols. For more details, refer to function and macro descriptions in firmware source files.

Classification RCV Task TX Task Micro-Scheduler

MII Context

MII_RCV

(R25 - R29)

RCV_DATA

(R2 - R9)

Length

(R18)

TX_CONTEXT

(R13 - R17)

TX Data

(R2 - R9)

None

Descriptor

Context

RCV_QUEUE_DESC_REG

(R20 - R21)

QUEUE_DESC_REG

(R2 - R3)
None

Temp. Reg.

RCV_TEMP_REG_x

(R20, R21, R13)

TEMP_REG_x

(R0, R4, R2, R3)

Others

(R10, R11)

TEMP_REG_2

(R4)

Perm. Reg. None

TX_DATA_POINTER

(R1.b3)

TX Flags

(R22.b3)

TASK_TABLE_ROW0

(R19)

CURRENT_TASK_POINTER

(R1.b2)

Table 7: PRU Register Usage

Page 17 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.5 Micro Scheduler Task Design

Micro Scheduler is central to our EMAC Design. It schedules various tasks which collectively

implement the functionality of EMAC. Simultaneous receive and transmit on both the Ethernet

ports at the same time is not possible without Micro–Scheduler. It checks various events and

schedules appropriate tasks depending on the outcome of those checks.

Micro-Scheduler schedules the tasks in a round-robin manner. Below, tasks are arranged in the

decreasing priority:

1. Receive (RX) Task

2. Transmit (TX) Task

3. Statistics Task

Micro-Scheduler (MS) starts with scheduling the RX Task and then executes the other tasks in

the round-robin scheme. It also checks for various events between the execution of two tasks and

these events can alter the scheduling. MS checks for below events:

1. Start-of-Frame (SOF)

Start-of-Frame signals a new receive packet at the physical port. MS reads the data from

the RX L2 FIFO into PRU registers and checks the 6
th
 bit of the R10 register i.e.,

RX_SOF status bit. If this bit is clear then MS schedules the next task. If this bit is set

then it checks whether 18 bytes have been already been received or not. If 18 bytes have

not been received then next task is executed otherwise RCV_FB is called. The number of

bytes received is stored in R18[5:0] in RX L2 Bank. Refer MII RT Functional Spec for

more details.

2. Receive End-of-Frame (RX_EOF)

Receive End-of-Frame event signals that a frame has been completely received. MS

checks this event only if there is an ongoing receive activity at the Port. This event is

routed through the R31 register to the two PRU’s. If this event has occurred then MS

calls the RCV_LB function otherwise it schedules the execution of the next task.

Note: Bit 20 of R31 corresponds to RX_EOF for MII RX Data to PRU R31 ® and RX

FIFO. We can’t use this bit for ICSS revision 1 as on AM335x and AM437x, RX_EOF is

auto-clear when a new frame arrives in RX L2 mode.

3. Transmit End-of-Frame (TX_EOF)

Transmit End-of-Frame event signals the completion of the transmission of a frame and

that TX FIFO is empty. Once this event has occurred, PRU can start the transmission of

the next packet. This event is realized through the underflow event on the TX FIFO.

When the TX FIFO becomes empty without seeing the TX_EOF command it generates

the underflow event. MS checks this event by reading the system event register of the

ICSS INTC.

Page 18 of 58 Document Version 1.0

ICSS Ethernet MAC

Page 19 of 58 Document Version 1.0

ICSS Ethernet MAC

Figure 4: Micro Scheduler Flow Chart

Figure 5: Round-robin approach followed by MS

Page 20 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.6 Receive Task Design

3.1.6.1 Brief Overview of RX L2 FIFO Architecture

The incoming frames are stored in RXL2 FIFO which is composed of 2 banks. Each bank has 32

bytes of data, 16 bytes of status and a 5 bit write pointer. There is one status entry per two bytes.

The write pointer gives the info about data entry being written. A status can be volatile or static. A

volatile status is one which is not yet complete, and hence cannot be parsed.

Note: The frames are packed contiguously. The buffer does not switch on each EOF.

3.1.6.2 Receive Frame Types

A receive frame can be one of the following types:

1. Unicast Frame

2. Broadcast Frame

3. Multicast Frame

A frame can be classified into one of the above three categories by looking at the destination

address (DA) of the frame. If the first bit (LSB) of the first byte of DA is one then it is either

multicast or broadcast frame. Further, if the DA is equal to 0xFFFFFFFF then it is broadcast

frame otherwise it is multicast frame. If the LSB of the first byte of DA is zero then it is a unicast

frame.

Following are actions taken by the Receive Task depending on the type of frame:

1. Unicast Frame

If promiscuous mode is not enabled and If a frame is unicast then its destination address

is compared against the interface MAC address of the device/slave. If it matches then the

frame is received in one of the host queue depending on the priority of the frame. If it

doesn’t match then the frame is dropped and dropped frame stats are updated. But if

promiscuous mode is enabled then it will accept all unicast packet and forward it to host.

2. Broadcast Frame

Broadcast frame is received in the host queue after checking for broadcast storm i.e.,

carrying out storm prevention. Storm prevention is only checked if enable by host.

3. Multicast Frame

In EMAC, the handling of multicast frame is the same as that of broadcast frames.

Page 21 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.6.3 Receive Task Design

Receive (RX) Task handles the reception of frames. It is responsible for storing the frames in host

queues. If a frame is not being received then Micro-scheduler checks for the start of a receive

frame before calling the next task. If Micro-scheduler detects start of receive frame and already

18 bytes have been received then it calls the Receive Task.

RX Task first of all checks whether the port on which frame has arrived is enabled or not. If that

port is not enabled then the incoming frame is dropped. RX Task then checks whether the source

address in the incoming frame matches with the interface MAC address of the slave. If it matches

then the frame is dropped. If an incoming frame is not dropped then RX context is initialized.

Following are the main parameters in the RX context:

1. host_rcv_flag: This flag is set when the frame is received for the host port.

2. qos_queue: This field stores the priority queue as determined by the frame.

3. byte_cntr: Number of bytes already received for the frame being received.

4. buffer_index: Offset of the data buffer in L3 RAM where the receive frame is stored.

5. base_buffer_index: Offset of the data buffer in L3 RAM corresponding to the first buffer

descriptor in the queue.

6. rcv_queue_pointer: Offset of the receive queue which is selected for the receive frame.

7. base_buffer_desc_offset: Offset of the base buffer descriptor for the queue selected.

8. top_most_buffer_desc_offset: Offset of the top most buffer descriptor for the queue

selected.

RX context is initialized in the beginning and updated throughout the reception of the frame.

When RX Task enters, it reads in the RX context from the scratch pad and saves it back before it

exits. Offsets of the top most buffer descriptor is used to quickly determine if there is a wrap

around in the receive queue.

RX Task is partitioned into following three parts:

1. Receive First Block (FN_RCV_FB)

This block is executed if there is a new receive frame at the port. First it parses the

incoming frame to determine whether it is received or dropped. If a frame is to be

received then “host_rcv_flag” is set. Depending on the status of the flag it initializes the

RX context for host receive or skips initialization if the frame is to be dropped and

updates stats. At the end the RX context for host receive is saved. If the firmware is

running slow compared to RX L2 FIFO filling up, the control is transferred to

FN_RCV_NB otherwise it returns to the Micro-scheduler.

Page 22 of 58 Document Version 1.0

ICSS Ethernet MAC

Figure 6: RCV_FB Flow Chart

2. Receive Next Block (FN_RCV_NB)

This block stores the data of the receive frame in the host queue. Maximum it can store

a block of 32 bytes per call. Once a queue is acquired, it starts storing the frame in

blocks of 32 bytes. Then it checks whether new 32 bytes have become available, if yes

then it stores them otherwise transfers the control to Micro-scheduler. After storing the

bank index flag, rx_bank_index, is flipped to remember that the next time the data is

stored from other bank of RX L2 FIFO.

Page 23 of 58 Document Version 1.0

ICSS Ethernet MAC

Figure 7: RCV_NB Flow Chart

3. Receive Last Block (FN_RCV_LB)

This block is executed when the RX EOF event has occurred. This block may store less

than 32 bytes or exact 32 bytes or more than 32 bytes. In-case where it stores more

than 32 bytes of data, it stores from both the banks of RX L2 FIFO. After storing the data

of the received frame it updates the first buffer descriptor for the Rx frame with the length

of frame and port number on which frame was received. It then updates the queue

descriptor to complete the reception of the frame. Only when the queue descriptor is

updated the Host comes to know about the received frame. Then it releases the

acquired queue and generates an interrupt to host when the frame is received in the

host queue. It also sets a flag, RX_STAT_PEND, to signal the Statistics Task. At last it

Page 24 of 58 Document Version 1.0

ICSS Ethernet MAC

clears the RCV_active bit, clears the RX_EOF event in ICSS INTC and transfers control

back to the Micro-scheduler.

Figure 8: RCV_LB Flow Chart

Page 25 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.7 Buffer Descriptors, Queue Descriptors and Receive Context

The way incoming packets are stored in L3 OCMC RAM has a lot to do with the manner in which

they are received from FIFO. Incoming data in the form of 32 byte chunks from the Rx FIFO is

stored as is by the Firmware to L3 OCMC RAM. These chunks are stored in contiguous manner.

So a 64 byte packet would get stored in two blocks. Each such 32 byte block is in turn pointed to

by a buffer descriptor stored in ICSS Shared RAM. Each queue consists of a string of such buffer

descriptors kept contiguously on the ICSS Shared RAM. A description of the Buffer Descriptor is

given below.

Bit(s) Name Meaning

0-7 Index Points to index in buffer queue, max 256 x 32 byte blocks can be addressed

8-12 Block_length Number of valid bytes in this specific block. Will be <=32 bytes on last block of

packet.

13 More "More" bit indicating that there are more blocks.

14 Shadow Indicates that "index" is pointing into shadow buffer. (Not in EMAC)

15 TimeStamp Indicates that this packet has time stamp in separate buffer - only needed if

PTCP runs on host.

16-17 Port Different meaning for ingress and egress. Ingress: Port=0 indicates PHY Port 1

and Port=1 indicates PHY Port 2. Egress: Port=0 sends on PHY Port 1 and

Port=1 sends on PHY Port 2. Port=2 goes over MAC table look-up.

18-28 Length 11 bit of total packet length which is put into first BD only so that host accesses

only one BD.

29 VlanTag Indicates that packet has Length/Type field of 0x8100 with VLAN tag in following

byte.

30 Broadcast Indicates that packet goes out on both physical ports, there will be two BD but

only one buffer.

31 Error Indicates there was an error in the packet.

Table 8: Buffer Descriptor Bits

The first descriptor contains the length of the packet through which the driver knows how many

bytes it will have to copy. Since the buffer descriptors are contiguous in memory no additional

pointers are required.

Bit(s) Name Meaning

0-15 Rd_ptr Read pointer. This points to the last buffer descriptor that points to valid data,

when FW RX Task puts data it increments the Read pointer

16-31 Wr_ptr Write pointer. This points to the bottom of the first buffer descriptor that contains

the data, when RX Task on Driver reads the data it increments this. When read

pointer equals write pointer there is no data in the buffers.

32-39 busy_s Is just a single bit. The busy bit is set by the driver to indicate to the firmware

that there is an ongoing copy, firmware does not use the memory during that

time.

40-47 status Queue status.

48-55 max_fill_level Maximum fill level of the queue. In bytes.

56-63 overflow_cnt Number of times the queue has overflown

Table 9: Queue Descriptor Bits

Using the queue descriptor both firmware and driver know which is the buffer descriptor which

points to the current data and combining this with the data from receive context which tells us

Page 26 of 58 Document Version 1.0

ICSS Ethernet MAC

where the top and bottom buffer descriptors are located it’s easy to tell if there is a wraparound

condition in the queue.

Page 27 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.8 Quality of Service (QoS)

Receive Task implements Quality of Service (QoS) for all the received frames. Firmware uses the

VLAN tag to determine the priority of received frame. There are four priority receive queues for

the host, two each for receive from each port. Queue priority 0 and queue priority 1 are used for

receiving from Port 1 where queue priority 0 is higher priority. Queue priority 2 and queue priority

3 are used for receiving from Port 1 where queue priority 2 is higher priority. A received frame is

parsed using quality of service rules to determine in which queue the frame would be received.

Following QoS rules are implemented by the firmware:

1. All the non-VLAN tagged frames are stored in the lowest priority queue (Queue Priority 1

for Port 1 and Queue Priority 3 for Port 2).

2. VLAN tagged frames with “Priority Code Point (PCP)” value of 5, 6 and 7 are stored in

highest priority queue (Queue Priority 0 for Port 1 and Queue Priority 2 for Port 2).

3. VLAN tagged frames with “Priority code point (PCP)” value of 1, 2, 3 and 4 are stored in

low priority queue (Queue Priority 1 for Port 1 and Queue Priority 3 for Port 2).

Page 28 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.9 Transmit Task design

3.1.9.1 Transmit Task design

Transmit task scans the send queues to determine whether there is a frame to be transmitted. It

first looks at the highest priority queue and if it is empty then only checks the lower priority

queues. If all the send queues are empty then it returns to the scheduler.

Whenever TX task is entered, it first checks XMT_active to determine whether there is an

ongoing transmission of a frame and if it is set then TX task fills the next bytes into the TX FIFO.

If XMT_active is clear then send queues are looked up to find whether there is a frame to

transmit. If there is a frame to be transmitted then it initializes the TX context. Following are the

main parameters in the TX context:

1. BUFFER_INDEX: Offset address of the data buffer in L3 RAM which contains first 32

bytes of the frame.

2. Packet_Length: Length of the transmit frame in number of bytes.

3. BYTE_CNT: Number of bytes already pushed to the TX FIFO for the transmit frame.

4. BUFFER_DESC_OFFSET: Offset of the first buffer descriptor for the transmit frame. First

buffer descriptor contains the length of transmit frame.

5. BASE_BUFFER_DESC_OFFSET: Offset of the base buffer descriptor of the queue in

which transmit frame is queued.

6. BUFFER_OFFSET: Offset of the base data buffer in the L3 RAM for the queue

containing frame to be transmitted.

7. TOP_MOST_BUFFER_INDEX: Offset of the top most data buffer in the L3 RAM for the

queue containing frame to be transmitted.

8. TOP_MOST_BUFFER_DESC_OFFSET: Offset of the top most buffer descriptor of the

queue containing frame to be transmitted.

TX context is initialized in the beginning and updated throughout the transmission of the frame.

When TX task enters it reads in the TX context from the scratch pad and saves it back before it

exits. Offsets of the top most buffer descriptor and data buffer are used to quickly determine if

there is a wrap around in the send queue.

TX Task is partitioned into following three parts:

1. Transmit First Block (XMT_FB)

This block of code first checks in the highest priority queue whether there is a frame to be

transmitted. If not, then it checks in second highest priority and so on. Once it finds a

pending frame then it initializes the TX context and set’s the XMT_active bit. It fetches the

first 32 bytes of transmit frame from the L3 RAM and pushes this data in the TX FIFO.

After pushing first two bytes into the TX FIFO, it enables transmit of the frame so that

frame transmission can start as soon as possible. After pushing first 32 bytes of data, it

checks whether RX_EOF event has occurred or not. If this event has not occurred then it

fetches next block of data and pushes further 24 bytes into the TX FIFO. Idea is to start

with a completely filled TX FIFO so that there is more time for PRU to come back and fill

TX FIFO.

Page 29 of 58 Document Version 1.0

ICSS Ethernet MAC

Figure 9: XMT_FB Flow Chart

2. Transmit Next Block (XMT_NB)

This block of code fetches and transmits rest of the frame apart from the last 32 bytes of

data. It computes the TX FIFO fill level using the IEP counter (Revision1 device types) or

reads it directly from MII RT register (Revision2 device types) and fills the available free

space in TX FIFO with the subsequent data of the frame. Maximum it fills 32 bytes of

data.

Page 30 of 58 Document Version 1.0

ICSS Ethernet MAC

Figure 10: XMT_NB Flow Chart

3. Transmit Last Block (XMT_LB)

This block is executed when there are 32 bytes or less to be transmitted. After pushing

the remaining bytes into the TX FIFO, it also pushes the CRC for the frame. It also

updates the read pointer in the queue to indicate that frame has been transmitted.

Figure 11: XMT_LB Flow Chart

Page 31 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.10 Statistics Task

Statistics on PRU

The statistics task is called by the scheduler periodically in a round robin manner along with RX

and TX task. The stats task checks for two flags RX_STAT_PEND and TX_STAT_PEND which

are in turn set by the RX and TX task respectively (these flags are only set for non-error frames).

Inside the stat task regular counters like multicast/broadcast/unicast counters along with binning

counters are updated. Error cases like CRC count, oversize, undersize frames, RX Error, SFD

Error, dropped frames etc. are not part of the stat task. These counters are incremented wherever

and wherever the error is detected. In addition to this Half Duplex counters like late collision,

excess collision are also not part of the stat task.

Besides these statistics the firmware does binning (segregating based on size of packet) of RX

and TX frames. In the new design firmware does most of the statistics and all counters except

one on Host are redundant. They are left there to help in debugging. The one counter exclusive to

Host is the rxUnknownProtocol.

Statistics on Host

On the Host Core, all statistics related functions are in the file icss_emacStatistics.c. The user

has to call ICSS_EmacReadStats() function which reads statistics from the shared memory in

PRU and copies them into the corresponding structure in Host.

 pruStat : Contains PRU statistics

 hostStat : Contains Statistics collected by Host (Redundant)

Page 32 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.11 Storm Prevention

Storm prevention is primarily done on PRUs using a credit based scheme. It is explained below.

 The Host writes the number of Multicast+Broadcast packets allowed in a 100ms interval

in DRAM of PRU. (STORM_PREVENTION_OFFSET)

 This value (credits) can be configured using the API setCreditValue()

 As soon as the PRU encounters a Multicast/Broadcast packet it decrements the value

written in memory by 1 and allows the packet to pass through. If the value goes to 0 the

packet is dropped

 At the end of every 100ms interval the host writes the value once again. Function

ICSS_EmacResetStormPreventionCounter() in file icss_StormControl.c

 Storm Control can be enabled and disabled on a per port basis using

ICSS_EmacEnableStormPrevention and ICSS_EmacDisableStormPrevention(). It can be

initialized using ICSS_EmacInitStormPreventionTable().

 The default credit value is defined as DEFAULT_CREDITS in icss_emacStormControl.h

and is equal to 2000.

 APIs defined in icss_emacStormControl.c.

3.1.12 Half Duplex Support

The latest firmware supports half duplex and associated statistics like late collision, multiple

collisions etc. The exception being that unlike the recommendation, frames are not dropped after

the maximum threshold for multiple collisions is reached, only a note is made of it. Half Duplex

requires proper pin-muxing to enable collision and carrier sense lines from the PHY. This is

dependent on the board type hence enable the external variable halfDuplexEnable which is part

of EMAC configuration to enable half duplex in EMAC. If this configuration is enabled, the EMAC

driver assumes that proper pin-muxing has been done.

3.1.13 Link Status Change detection

Link change is monitored via an Interrupt on HOST. When there is a change in link state such as

speed/duplexity or a link up/down event, an interrupt is triggered from the MDIO which invokes

the ISR link0ISR/link1ISR on HOST for Port0/Port1 respectively. The ISR modifies the link state

information in two variables.

 PORT_STATUS_OFFSET – Contains link up/down and Half Duplex/Full Duplex

information.

 PHY_SPEED_OFFSET – Contains PHY speed information.

Page 33 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.14 EMAC Time Triggered Send

3.1.14.1 Brief Overview of TTS

The EMAC time triggered send is used to expand classical Ethernet to meet deterministic, time-

critical or safety-relevant conditions. TTS has been designed by using the IEP Counter and

Compare Registers. Queue 0 is reserved as the real-time queue. All packets in queue 0 are cyclic

packets. On the other hand, packets from other queues are acyclic packets. Cyclic packets are

sent at triggered instances, as programmed in compare registers, whereas acyclic packets are

sent based on time availability, as shown in subsequent figures throughout this section.

Figure 12: Time Triggered Send Overview

3.1.14.2 TTS Register Usage and Source Files

Time triggered send (TTS) has been implemented as part of the TX Task. The code is spread

across two files, emac_MII_Xmt.asm and micro_scheduler.asm. Different files involved in TTS

implementation are documented below.

File Name Description

emac_MII_Xmt.asm
Minimal changes in existing Tx Task. Used to incorporate calls for different

TTS functions and macros.

micro_scheduler.asm
Minimal changes. Used to incorporate calls for different TTS functions and

macros.

emac_tts.asm Contains TTS functions.

emac_tts.h Contains TTS macros and pre-processor directives.

icss_emacSwitch.h Contains TTS offsets. These offsets are also used by host to enable TTS.

Table 10: TTS Source Code Files List

No registers are reserved for TTS usage, except for some bits in the R22 persistent register. The

persistent bits reserved for TTS in R22 are documented below.

Bit Name Usage

R22.t21 TTS_ENABLE

Set when TTS is enabled by host. If set, all TTS

related code will execute as part of Tx Task.

If clear, no TTS related code will execute.

R22.t20 TTS_FIRST_SETUP

Set after the first time setup of IEP compare

registers is done and TX_EN_MODE is set, in

function FN_TTS_IEP_CFG_PRE.

Cleared when TTS is disabled.

Page 34 of 58 Document Version 1.0

ICSS Ethernet MAC

R22.t19 TTS_RT_QUEUE_PKT

Set when the packet is coming from reserved

real-time queue (queue 0).

Cleared when packet is coming from non-RT

queue (queue 1,2,3).

R22.t18 TTS_FIRST_PKT_done

Set when at least one packet has been

transmitted in current cycle.

Cleared after every cycle in function

FN_TTS_IEP_CFG_PRE.

R22.t17 TTS_FIRST_PKT_since_enable

Set when the first packet has been transmitted

after TTS is enabled.

Cleared when TTS is disabled.

Used for debug purposes such as calculating

cycles missed by cyclic packets.

R22.t16 TTS_CMP_3456_FIRST_Exception

This is specific to Revision1 firmware. Since

Revision1 device types have a 32-bit counter, we

need to handle the counter wraparound properly.

The first time triggers are programmed into

compare registers, the compare registers are not

enabled if the triggers are supposed to occur in

next cycle of IEP counter. They are enabled after

wraparound. This is because if triggers are

enabled immediately, the IEP_Counter>Compare

Value and Compare Event Enable -> Toggle

events become true, and the compare event is

hit immediately which is erroneous behavior.

Thus this bit is used to keep this in check.

R22.t15 TTS_CMP5_CMP6_in_next_IEP_cycle

This is specific to Revision1 firmware. This bit is

used to detect if the compare event being

programmed is in current IEP cycle or next IEP

cycle. It helps in eliminating boundary erroneous

conditions.

Table 11: TTS R22 Bits Usage

NOTE: The queue naming convention used in this documentation for EMAC TTS is as per the

EMAC Driver API, i.e., queue 0/1/2/3. The firmware uses a different naming convention, i.e.,

queue 1/2/3/4. The reserved real-time queue for cyclic packets is the high priority queue 0 (as per

Driver API) or queue 1 (as per firmware).

Page 35 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.14.3 TTS Parameters and Memory Map

Below is a list of parameters used by TTS in firmware. These are defined in icss_emacSwitch.h.

Parameter
Size

(bytes)
Description

ICSS_EMAC_TTS_BASE_OFFSET NA

Base start address of TTS offsets. This

should always be kept equal to start of

EMAC specific DRAM.

ICSS_EMAC_TTS_CYCLE_START_OFFSET 8

The IEP counter value (ns) to be

programmed for the first trigger.

Provided by the host using the ICSS

EMAC IOCTL.

ICSS_EMAC_TTS_CYCLE_PERIOD_OFFSET 4

The cycle period (ns) of triggers for

cyclic frames.

Provided by the host using the ICSS

EMAC IOCTL.

ICSS_EMAC_TTS_CFG_TIME_OFFSET 4

The amount of time available for

configuring the next TTS cycle. For

most applications this time will also

include the time required to receive

input, process input, and then generate

output (cyclic frames); all of which is

normally done by host.

Provided by the host using the ICSS

EMAC IOCTL.

ICSS_EMAC_TTS_STATUS_OFFSET 4

Stores TTS firmware status. This can

be queried by Host at any time using

ICSS EMAC IOCTL.

ICSS_EMAC_TTS_MISSED_CYCLE_CNT_OFFSET 4

Stores the number of cycles missed by

cyclic frames. This can be queried by

Host at any time using ICSS EMAC

IOCTL.

ICSS_EMAC_TTS_PREV_TX_SOF 8

The Transmit Start-of-Frame for

previous packet. This can be queried

by Host at any time using ICSS EMAC

IOCTL.

ICSS_EMAC_TTS_CYC_TX_SOF 8

The Transmit Start-of-Frame for

previous cyclic packet. This can be

queried by Host at any time using ICSS

EMAC IOCTL.

Table 12: TTS Control Variables

Memory map for TTS is as follows:

Definition Address Map Remarks

TTS Control

Variables
0x1E98 - 0xIEC0

Stores TTS Control Variables.

40 bytes starting from EMAC_SPECIFIC_DRAM_START_OFFSET.

Present on both, DRAM0 and DRAM1.

Table 13: TTS Memory Map

Page 36 of 58 Document Version 1.0

ICSS Ethernet MAC

The bitwise summary for TTS status stored at ICSS_EMAC_TTS_STATUS_OFFSET is as follows:

Bits Field Name Description

31:6 RESERVED Reserved for future use.

5 ICSS_EMAC_TTS_CMP0_CMP7_SETUP

0: CMP0/CMP7 setup not completed.

1: CMP0/CMP7 setup completed.

Revision1 specific.

Cleared in driver API when TTS is enabled.

4 ICSS_EMAC_TTS_CYC_INTERRUPT_ENABLE

0: Disable interrupt notification for cyclic

packet insertion.

1:Enable interrupt notification for cyclic

packet insertion.

Cleared in driver API when TTS is enabled.

3 ICSS_EMAC_TTS_CYC_TX_SOF_ENABLE

0: Disable storing of cyclic packets’ transmit

start-of-frame.

1: Enable storing of cyclic packets’ transmit

start-of-frame.

Cleared in driver API when TTS is disabled.

Cleared in driver API when TTS is enabled.

2 ICSS_EMAC_TTS_INSERT_CYC_FRAME_EVENT

0: Not in config period. No need to insert

cyclic frame at this time.

1: Config period has started. Need to insert

cyclic frame.

Cleared on every CMP3/CMP4 event and

on receiving a cylic frame in queue 0.

Cleared in driver API when TTS is enabled.

1 ICSS_EMAC_TTS_MISSED_CYCLE

0: No cycles missed by cyclic packets.

1: At least one cycle missed by cyclic

packets.

No. of cycles missed can be checked from

ICSS_EMAC_TTS_MISSED_CYCLE_CNT

_OFFSET

Cleared in driver API when TTS is enabled.

0 ICSS_EMAC_TTS_PRU_ENABLE

0: Disable TTS on PRU.

1: Enable TTS on PRU.

Cleared in driver API when TTS is disabled.

Cleared in driver API when TTS is enabled.

Table 14: TTS Status Bits

3.1.14.4 TTS Macros

Multiple Macros have been used to implement various TTS related code. Macros have been used

to keep the code clean which would otherwise have cluttered all code files especially considering

that Revision1 and Revision2 device types have slightly different TTS implementations. The details

regarding TTS Macros can be found in Firmware Macros Description section.

Page 37 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.14.5 TTS Functions

The following is the list of TTS related functions and their purpose:

Function Description

FN_TTS_IEP_CFG_PRE_ICSS_REV2

Handles pre-configuration of TTS cycles in Config

Period before every TTS cycle. Pre-configuration

involves setting up the compare registers for upcoming

cycle and also calculating and storing the Cycle Start

Time for next cycle.

This is specific to Revision2 because IEP handling is

different for Revision1 and Revision2 device types in

TTS algorithm.

FN_TTS_IEP_CFG_PRE_ICSS_REV1

Handles pre-configuration of TTS cycles in Config

Period before every TTS cycle. Pre-configuration

involves setting up the compare registers for upcoming

cycle and also calculating and storing the Cycle Start

Time for next cycle.

This is specific to Revision1 because IEP handling is

different for Revision1 and Revision2 device types in

TTS algorithm.

FN_TTS_IEP_CFG_CLEAR

Handles clearing of R22 TTS bits and TTS control

variables when TTS is disabled. It also disables all

compare events.

FN_TTS_PKT_SIZE_CHECK_ICSS_REV2

Handles checking of packet size before the packet can

be transmitted to ensure that the pre-configuration of

next cycle starts on time. It ensures that the packet can

be transmitted within the current cycle before

CMP5/CMP6 event.

This is specific to Revision2 because IEP handling is

different for Revision1 and Revision2 device types in

TTS algorithm.

FN_TTS_PKT_SIZE_CHECK_ICSS_REV1

Handles checking of packet size before the packet can

be transmitted to ensure that the pre-configuration of

next cycle starts on time. It ensures that the packet can

be transmitted within the current cycle before

CMP5/CMP6 event.

This is specific to Revision1 because IEP handling is

different for Revision1 and Revision2 device types in

TTS algorithm.

FN_TTS_IEP_CMPCFG_ARBITRATION

This is used for arbitration between PRU0 and PRU1

when TTS is enabled on both PRUs and they compete

to access the IEP Compare Configuration Register,

which is a shared resource.

FN_TTS_EXIT_IEP_CMPCFG_ARBITRATION

This is used for arbitration between PRU0 and PRU1

when TTS is enabled on both PRUs and they compete

to access the IEP Compare Configuration Register,

which is a shared resource.

Table 15: TTS Functions

Page 38 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.14.6 TTS Debug Provisions

For the cyclic packet to be transmitted exactly at the pre-defined trigger instant, the packet must

be present in the high priority queue (queue 0) before the trigger instant. The firmware informs

the Host about this by giving an interrupt (if ICSS_EMAC_TTS_CYC_INTERRUPT_ENABLE is

set) or by setting ICSS_EMAC_TTS_INSERT_CYC_FRAME_EVENT. TTS provides a way to

check if the firmware found any cyclic packet or not. If no cyclic packet is found in the queue, the

ICSS_EMAC_TTS_MISSED_CYCLE bit is set in the TTS status. Also, the counter for missed

cycles, ICSS_EMAC_TTS_MISSED_CYCLE_CNT_OFFSET, is updated (incremented by 1).

The firmware also provides a way to verify when the cyclic packet was transmitted by saving the

transmit start-of-frame. This is done if ICSS_EMAC_TTS_CYC_TX_SOF_ENABLE is set by host.

3.1.14.7 TTS Assumptions

The following are the assumptions for TTS implementation:

1. The cycle period is long enough to be able to transmit any cyclic packet in queue 0.

Failure to ensure this will cause the cyclic packet with size greater than the allowed size

(as per the period), and any cyclic packets following it, to remain in the queue.

2. The configuration time provided (using ICSS EMAC IOCTL) is sufficient for the PRU to

configure the next cycle.

3. If the host keeps queueing packets irrespective of the fact whether the packet has been

transmitted by the firmware (in accordance with the preset triggered intervals), the

packets might get dropped at the driver level if the queue is full. It is assumed that this is

taken care of at the host level.

3.1.14.8 Detailed Explanation of TTS

To help understand EMAC TTS better, a detailed flow chart has been provided below. This is just

a basic flowchart. The actual implementation might differ considering the fact that Revision1 and

Revision2 device types have different IEP counter types.

Page 39 of 58 Document Version 1.0

ICSS Ethernet MAC

Figure 13: TTS Flow Chart (Part 1)

Page 40 of 58 Document Version 1.0

ICSS Ethernet MAC

Figure 14: TTS Flow Chart (Part 2)

With TTS enabled, the TX Task first checks if transmit is active. This check is performed because

TTS can be enabled/disabled dynamically by the host. If transmit is inactive or once transmit

becomes inactive, TX Task checks if TTS has been setup/configured for the first time. If not, we

Page 41 of 58 Document Version 1.0

ICSS Ethernet MAC

setup the compare registers, enable TX_EN_MODE in MII_RT_TXCFG register. TX_EN_MODE

allows us to use IEP_CMP[3] and IEP_CMP[4] as triggers for TX0 and TX1 respectively, i.e.

transmission will start once these events are triggered.

Note: When TX_EN_MODE is enabled, IEP_CMP[3] must be set before the TX will start for TX0,

and IEP_CMP[4] for TX1. This is just an additional dependency, to start transmission, to the

current set of dependencies, which are FIFO NOT empty and TX_START_DELAY met.

The compare registers usage is as mentioned in the following table:

Compare Register Purpose

Compare 0 Register
Used to set IEP wraparound to 1 second in Revision1 device types. Also used

to detect IEP wraparound for PRU0. Revision1 specific.

Compare 3 Register Used to set send trigger for TX0 i.e., PRU0

Compare 4 Register Used to set send trigger for TX1 i.e., PRU1

Compare 5 Register Used to set configuration trigger for PRU0

Compare 6 Register Used to set configuration trigger for PRU1

Compare 7 Register
Used to detect IEP wraparound for PRU1.

Revision1 specific.

Table 16: TTS Compare Register Usage

After the first iteration, configuration (updating compare registers for next cycle) will only be done

if compare 5 event (for PRU0) or compare 6 event (for PRU1) has occurred. These events are

the start of configuration time.

Here onwards, TX Task runs and the flow reaches FN_XMT_scheduler. In the transmit scheduler,

an additional check has been added to the existing loop for checking packets in different queues.

Here, we check if the packet was found in queue 0 (designated high priority queue for cyclic

packets) or any other queue. If a cyclic packet is available, we check if a packet has previously

been transmitted in the current cycle. This is because of the following reasons:

1. We don’t want multiple cyclic packets to be transmitted in the same cycle.

2. We also don’t want to transmit a cyclic packet if an acyclic packet has already been

transmitted in the current cycle (refer the diagram below).

3. We also want to minimize jitter. This is taken care of by timely notifying Host about when

to insert cyclic packet.

Page 42 of 58 Document Version 1.0

ICSS Ethernet MAC

Figure 15: Incorrect Cyclic Packet Transmission in TTS

If a packet has been transmitted, it means the cyclic packet was not added to the queue on time

and has missed the cycle or perhaps the cyclic packet under discussion is for next cycle. Refer to

EMAC TTS Debug Provisions for more details. In this situation, we skip the cyclic packet and see

if any acyclic packet is available. If no packet has been transmitted, it means this is the start of

the cycle and the cyclic packet can be sent.

Once the above checks have been performed, we check if there is enough time available in the

cycle for the chosen packet to be transmitted. This is done to ensure that the configuration of the

next cycle starts on time and the next cyclic packet is sent out on time. Refer the diagram below

for more details. If feasible, the packet is transmitted, i.e. put into the TX FIFO. The time check is

performed as per the following equations:

1. Find packet length.

2. (Length)actual = Length + 12 // 8 bytes of preamble + 4 bytes of CRC

3. (Time)required = (Length)actual x 80 // For 100 Mbps

4. (Time)available = (Compare)5/6 – (Counter)current

5. if ((Time)required < (Time)available)  Transmit packet.

Page 43 of 58 Document Version 1.0

ICSS Ethernet MAC

Figure 16: Time Availability Check in TTS

In the end, once the task execution is finished and TX EOF is reached, we need to set

TX_ENABLE bit in MII_RT_TXCFG register. This is because when TX_EN_MODE is enabled,

TX_ENABLE is auto-cleared.

3.1.15 EMAC Multicast Filtering

3.1.15.1 Brief Overview of Multicast Filtering

Multicast filtering is employed primarily to limit the amount of traffic going to host. A traditional

approach is to whitelist all MAC ID's at firmware level so no un-configured MAC makes it to

driver. This is quite an expensive approach from cycles & memory point of view. On the same

time, it is a perfect fit. The proposal here is: A simple 1-bit hash where some unwanted MAC ID's

may also make it to the top layer which will have to be rejected by the driver. It is a bit loose fit, at

the same time, very cycles & memory friendly.

Page 44 of 58 Document Version 1.0

ICSS Ethernet MAC

Figure 17: Operational Overview

Every incoming multicast MAC ID is hashed to obtain a 8 bit result (let’s call it hashVal) as shown above
(explained later). This hashVal is used as a lookup index into the multicast table. Let’s define the
multicast table here, it’s a 1 byte per hashVal => 1 bit * 256 possible values = 256 bytes wide table. The
byte functionality is defined as below:

 =0 : no MAC ID added to this bin => do not allow packet to host
 =1 : some MAC ID added to this bin => allow packet to host

3.1.15.2 Multicast filtering Register Usage and Source Files

Multicast filtering is implemented as part of the Rx first block Task. The code is spread across a single
file, emac_MII_Rcv.asm. Different files involved in Multicast filtering implementation are documented as
below.

File Name Description

Emac_MII_Rcv.asm

Minimal changes in existing Rx Task. Used to incorporate First

block, next block and last block processing on the Rx packet.

Used to filter the multicast packets if feature is enabled.

Table 17: Multicast filtering Source code Files List

No registers are reserved for Multicast filtering usage.

3.1.15.3 Multicast filtering parameters and Memory Map

Below is a list of parameters used by multicast filtering in firmware. These are defined in
icss_vlan_mcast_filter_mmap.h file.

Note that these offsets are present for both emac ports. The offsets are measured from start of
dataRamAddress for both PRUs.

Page 45 of 58 Document Version 1.0

ICSS Ethernet MAC

Parameter
Size

(bytes)
Description

ICSS_EMAC_FW_MULTICAST_FILTER_MASK_OFFSET 6

Base start address of 48 bit

Multicast filter mask offset.

Provided by the host using

the ICSS EMAC IOCTL.

ICSS_EMAC_FW_MULTICAST_FILTER_CTRL_OFFSET 1

Multicast filter control to

add or remove the MAC ID

Provided by the host using

the ICSS EMAC IOCTL.

ICSS_EMAC_FW_MULTICAST_FILTER_OVERRIDE_STATUS 1

Multicast filter mask

override offset.

Provided by the host using

the ICSS EMAC IOCTL.

ICSS_EMAC_FW_MULTICAST_FILTER_DROP_CNT_OFFSET 4

Multicast packet drop count

due to multicast filter

enable

ICSS_EMAC_FW_MULTICAST_FILTER_TABLE 256

Base address of the

multicast filter table

Table 18: Multicast filtering Control variables

 Memory map for Multicast filtering is as below:

Definition Address Map Remarks

Multicast filter Control

Variables
0x00F4-0x0200

Stores Multicast filtering Control variables.

268 bytes starting from

EMAC_SPECIFIC_DRAM_START_OFFSET.

Present on both DRAM0 and DRAM1.

Table 19: Multicast filtering Memory map

3.1.15.4 Multicast filtering Macros

Multicast filtering table lookup is implemented as a macro to be used between two PRU codes. The
details regarding the macro can be found in firmware macros description section.

3.1.15.5 Multicast filtering Functions

There are no functions in the firmware related to multicast filtering implementation.

3.1.15.6 Multicast filtering Assumptions

There are no assumptions. Basically as per theory with 256 entry hash (mask in the paper) - we can
receive 50 multi cast addresses in application and reject unwanted frames with ~80% probability

3.1.16 EMAC VLAN Filtering

3.1.16.1 Brief Overview of VLAN Filtering

Page 46 of 58 Document Version 1.0

ICSS Ethernet MAC

The VLAN filtering logic is implemented for packet forwarded to Host at Egress (as per 802.1Q
nomenclature).

802.1Q adds a 32-bit field between the source MAC address and the EtherType fields of the original
frame as shown below:

Figure 18: VLAN Overview

Two bytes are used for the tag protocol identifier (TPID), the other two bytes for tag control information
(TCI). The TCI field is further divided into PCP, DEI, and VID.

802.1Q tag format:

16 bits 3 bits 1 bit 12 bit

TPID
TCI

PCP DEI VID

 Tag protocol identifier (TPID) : A 16-bit field set to a value of 0x8100 in order to identify the
frame as an IEEE 802.1Q-tagged frame. This field is located at the same position as the
EtherType field in untagged frames, and is thus used to distinguish the frame from untagged
frames.

 Tag control information (TCI): A 16-bit field containing the following sub-fields:
 Priority code point (PCP): A 3-bit field which refers to the IEEE 802.1p class of service and

maps to the frame priority level. Different PCP values can be used to prioritize different
classes of traffic. This field is used presently to decide the QoS for host receive.

 Drop eligible indicator (DEI): A 1-bit field. May be used separately or in conjunction with
PCP to indicate frames eligible to be dropped in the presence of congestion. Not used.

 VLAN identifier (VID): A 12-bit field specifying the VLAN to which the frame belongs. The
hexadecimal values of 0x000 and 0xFFF are reserved. All other values may be used as
VLAN identifiers, allowing up to 4,094 VLANs.

3.1.16.2 VLAN filtering Register Usage and Source Files

VLAN filtering has been implemented as part of the RX Task. The code is implemented in

emac_MII_Rcv.asm. Different files involved in VLAN filtering implementation are documented

below.

File Name Description

emac_MII_Rcv.asm
Minimal changes in existing Rx Task. Used to incorporate calls for different

VLAN filtering functions and macros.

emac_MII_Rcv.h
Minimal changes. Used to incorporate calls for different TTS functions and

macros.

icss_vlan_mcast_filter

_mmap.h
Contains VLAN filtering memory map.

Page 47 of 58 Document Version 1.0

ICSS Ethernet MAC

Table 20: VLAN filtering Source Code Files List

3.1.16.3 VLAN filtering parameters and Memory Map

Below is a list of parameters used by vlan filtering in firmware. These are defined in
icss_vlan_mcast_filter_mmap.h file.

Note that these offsets are present for both emac ports. The offsets are measured from start of
dataRamAddress for both PRUs.

Parameter
Size

(bytes)
Description

ICSS_EMAC_FW_VLAN_FILTER_CTRL_BITMAP_OFFSET 1

Base start address of VLAN

filter control offsets. Configured

by the host using the ICSS

EMAC IOCTL.

ICSS_EMAC_FW_VLAN_FILTER_DROP_CNT_OFFSET 4
VLAN filter drop count statistics

ICSS_EMAC_FW_VLAN_FLTR_TBL_BASE_ADDR 512
VLAN FILTER table

Table 21: VLAN filtering Control variables

 Memory map for VLAN filtering is as below:

Definition Address Map Remarks

VLAN filter Control

Variables

VLAN TABLE:

0x0200-0x400

Ctrl + Statistics:

0xEF-0xF4

Stores VLAN filtering Control variables (517 byes)

EMAC_SPECIFIC_DRAM_START_OFFSET.

Present on both DRAM0 and DRAM1.

Table 22: VLAN filtering Memory map

3.1.16.4 VLAN filtering Macros

VLAN filtering table lookup is implemented as a macro to be used between two PRU codes. The details
regarding the macro can be found in firmware macros description section.

3.1.16.5 VLAN filtering Assumptions

The following assumptions are being made:

 Only 1 VLAN tag will be present/processed in the firmware. Nested VLAN tags are not to be
processed.

 The VLAN tag is not modified/removed in the firmware. The host receives the packet with the
VLAN tag, if sent to host.

3.1.16.6 Detailed explanation of VLAN filtering feature

The following flowchart and the functionality table shows the flow for host port receives for VLAN filtering.

Page 48 of 58 Document Version 1.0

ICSS Ethernet MAC

Figure 19: Operational Overview

The operation and expected packet filter control is as explained below.

VLAN FILTER CONTROL
VIDs
(T)

PRIORITY
TAG HOST
RECEIVE

(P)

UNTAGGED
HOST

RECEIVE
(U)

PACKET
TYPES NOT

RECEIVED BY
HOST

PACKET
TYPES

RECEIVED BY
HOST

Page 49 of 58 Document Version 1.0

ICSS Ethernet MAC

VLAN FILTER DISABLE X X X NONE TPU

VLAN FILTER ENABLE
NOT

CONFIGURED
NOT

ALLOWED
NOT

ALLOWED
TPU NONE

VLAN FILTER ENABLE
NOT

CONFIGURED
NOT

ALLOWED
ALLOWED TP U

VLAN FILTER ENABLE
NOT

CONFIGURED
ALLOWED

NOT
ALLOWED

TU P

VLAN FILTER ENABLE
NOT

CONFIGURED
ALLOWED ALLOWED T PU

VLAN FILTER ENABLE CONFIGURED
NOT

ALLOWED
NOT

ALLOWED
PU T

VLAN FILTER ENABLE CONFIGURED
NOT

ALLOWED
ALLOWED P TU

VLAN FILTER ENABLE CONFIGURED ALLOWED
NOT

ALLOWED
U TP

VLAN FILTER ENABLE CONFIGURED ALLOWED ALLOWED NONE TPU

DEFAULT:

VLAN FILTER DISABLE

NOT
CONFIGURED

ALLOWED ALLOWED NONE TPU

Table 23: VLAN Filtering expected Results

3.1.17 EMAC PTP support

3.1.17.1 Brief Overview of PTP

This document details the design aspects of PTP/1588 v2 master/slave implementation on PRU-ICSS.
PTP comes in a variety of standards and flavors. Every industry has its own set of sub rules and
configurations which are defined by Annexes and Profiles. For example the telecom industry uses the

Page 50 of 58 Document Version 1.0

ICSS Ethernet MAC

telecom profile while power and substation automation requires the power profile. The firmware supported
in EMAC has both master and slave supports.

3.1.17.2 PTP Register Usage and Source Files

PTP filtering has been implemented as part of the both TX and RX Task. The code is

implemented in emac_MII_Xmt.asm, emac_MII_Rcv.asm, micro_scheduler.asm and

emac_ptp.asm. Different files involved in PTP implementation are documented below.

File Name Description

emac_MII_Rcv.asm Changes to assign QOS for PTP frames and set Flags to indicate PTP frames

emac_MII_Xmt.asm Changes to raise TimeSync Tx interrupt after completion

emac_ptp.asm PTP functionality implementation for master and slave

microscheduler.asm PTP background task implementation

Icss_timeSync_memo

ry_map.asm
Memory map for PTP

Table 24: PTP Source Code Files List

3.1.17.3 PTP parameters and Memory Map

Below is a list of parameters used by PTP in firmware. These are defined in
icss_timeSync_memory_map.h file.

Note that these offsets are present for both emac ports. The offsets are measured from start of
dataRamAddress for both PRUs.

NAME OFFSET SIZE Comment

RX_SYNC_TIMESTAMP_OFFSET_P1 0 12 Sync Rx Timestamp for Port 1

RX_PDELAY_REQ_TIMESTAMP_OFFSET_P1 12 12 Delay Req Rx Timestamp for Port 1

RX_PDELAY_RESP_TIMESTAMP_OFFSET_P1 24 12 Delay Resp Rx Timestamp for Port 1

RX_SYNC_TIMESTAMP_OFFSET_P2 36 12 Sync Rx Timestamp for Port 2

RX_PDELAY_REQ_TIMESTAMP_OFFSET_P2 48 12 Delay Req Rx Timestamp for Port 2

RX_PDELAY_RESP_TIMESTAMP_OFFSET_P2 60 12 Delay Resp Rx Timestamp for Port 2

GPTP_DOMAIN_NUMBER_LIST 72 2 GPTP Domain Numbers supported.

2 values

P1_SMA_LINE_DELAY_OFFSET 74 4 Line/Peer delay for Port 1

P2_SMA_LINE_DELAY_OFFSET 78 4 Line/Peer delay for Port 2

GPTP_SECONDS_COUNT_OFFSET 82 6 Seconds counter for

AM335x/AM437x implementation

GPTP_TC_RCF_OFFSET 88 4 RCF value stored in Q10 format

DUT_IS_MASTER_OFFSET 92 1 If DUT is configured as Master, write

1 here

MASTER_PORT_NUM_OFFSET 93 1 Port which is connected to Master

SYNC_MASTER_MAC_OFFSET 94 6 MAC ID of PTP Master. BMCA to

write value here

TX_TS_NOTIFICATION_OFFSET_SYNC_P1 100 1 Firmware writes 1 here when Tx

callback interrupt for Sync is

Page 51 of 58 Document Version 1.0

ICSS Ethernet MAC

generated. Value is for Port 1 and

driver must clear this location.

TX_TS_NOTIFICATION_OFFSET_PDEL_REQ_P1 101 1 Firmware writes 1 here when Tx

callback interrupt for Delay Request

is generated. Port 1. Value is for Port

1 and driver must clear this location.

TX_TS_NOTIFICATION_OFFSET_PDEL_RES_P1 102 1 Firmware writes 1 here when Tx

callback interrupt for Delay

Response is generated. Port 1. Value

is for Port 1 and driver must clear

this location.

TX_TS_NOTIFICATION_OFFSET_SYNC_P2 103 1 Firmware writes 1 here when Tx

callback interrupt for Sync is

generated. Value is for Port 2 and

driver must clear this location.

TX_TS_NOTIFICATION_OFFSET_PDEL_REQ_P2 104 1 Firmware writes 1 here when Tx

callback interrupt for Delay Request

is generated. Port 2. Value is for Port

1 and driver must clear this location.

TX_TS_NOTIFICATION_OFFSET_PDEL_RES_P2 105 1 Firmware writes 1 here when Tx

callback interrupt for Delay

Response is generated. Port 2. Value

is for Port 1 and driver must clear

this location.

TX_SYNC_TIMESTAMP_OFFSET_P1 106 12 Tx Timestamp for Sync frame for

Port 1

TX_PDELAY_REQ_TIMESTAMP_OFFSET_P1 118 12 Tx Timestamp for Delay Request

frame for Port 1

TX_PDELAY_RESP_TIMESTAMP_OFFSET_P1 130 12 Tx Timestamp for Delay Response

frame for Port 1

TX_SYNC_TIMESTAMP_OFFSET_P2 142 12 Tx Timestamp for Sync frame for

Port 2

TX_PDELAY_REQ_TIMESTAMP_OFFSET_P2 154 12 Tx Timestamp for Delay Request

frame for Port 2

TX_PDELAY_RESP_TIMESTAMP_OFFSET_P2 166 12 Tx Timestamp for Delay Response

frame for Port 2

GPTP_CTRL_VAR_OFFSET 178 1 If PTP implementation on firmware

needs to be disabled then driver

must write 0 here. Correspondingly

driver writes 1 here to enable PTP on

firmware

DISABLE_SWITCH_SYNC_RELAY_OFFSET 179 1 Used by Profinet PTCP

MII_RX_CORRECTION_OFFSET 180 2 PHY Rx correction value is written

here

MII_TX_CORRECTION_OFFSET 182 2 PHY Tx correction value is written

here

Page 52 of 58 Document Version 1.0

ICSS Ethernet MAC

GPTP_IEP_VAL_CYCLE_COUNTER

GPTP_CMP1_CMP_OFFSET

184 4 Used for book keeping by PTP

background task in AM3/AM4

implementation

GPTP_SYNC0_CMP_VALUE 188 4 Used for book keeping by PTP

background task in AM3/AM4

implementation

GPTP_SYNC0_CMP_OFFSET 192 8

GPTP_CMP1_PERIOD_OFFSET 200 4 The 1PPS signal width is stored here.

If for example 1PPS pulse width of

1ms is to be generated then 1ms

value is written here

GPTP_SYNC0_WIDTH_OFFSET 204 4 The 1PPS signal width is stored here.

If for example Sync0 output must be

generated every 1 ms with a width

of 250 us then a value of 250us in

terms of nanoseconds is written

here

SINGLE_STEP_IEP_OFFSET_P1 208 8 IEP count at the time Sync is sent

out by driver on Port 1. Refer to the

1-step sync generation logic

SINGLE_STEP_SECONDS_OFFSET_P1 216 8 Seconds count at the time Sync is

sent out by driver on Port 1. Refer to

the 1-step sync generation logic

SINGLE_STEP_IEP_OFFSET_P2 224 8 IEP count at the time Sync is sent

out by driver on Port 2. Refer to the

1-step sync generation logic

SINGLE_STEP_SECONDS_OFFSET_P2 232 8 Seconds count at the time Sync is

sent out by driver on Port 2. Refer to

the 1-step sync generation logic

LINK_LOCAL_FRAME_HAS_HSR_TAG 240 1 Firmware detects if the link local

frame has an HSR tag and writes 1

here

PTP_PREV_TX_TIMESTAMP_P1 241 8 For internal book keeping to make

sure the Tx timestamp for Port 1 is

not from previous frame

PTP_PREV_TX_TIMESTAMP_P2 249 8 For internal book keeping to make

sure the Tx timestamp for Port 2 is

not from previous frame

PTP_CLK_IDENTITY_OFFSET 257 8 Write the PTP clock identity here

GPTP_SCRATCH_MEM 265 16 Used for internal book keeping

Table 25: PTP Control variables

3.1.17.4 PTP Macros

PTP functions are implemented as a macro to be used between two PRU codes. The details regarding
the macro can be found in firmware macros description section.

Page 53 of 58 Document Version 1.0

ICSS Ethernet MAC

3.1.17.5 PTP Assumptions

TimeSync uses the 200 Mhz IEP timer inside PRU-ICSS as the base timer for all synchronization related
activities. PRU-ICSS has the capability to timestamp entry and exit of a frame based on this timer. The
timer design varies slightly between AM3/AM4 and AM5 (& above) class of devices. In AM3/AM4 (older)
devices IEP is a 32 bit counter while in newer SoC's it's a 64 bit counter. This creates some important
differences between how the timestamps are generated and handled.

Since PTP expects time in the form of seconds and nanoseconds, an API abstracts the difference
between the 32-bit and 64-bit versions and returns a consistent seconds and nanoseconds timestamp.
For the sync signal generation CMP1 is programmed to a value ranging from 1ms to 1 second.
PRU0 checks this event in Micro Scheduler and re-programs it after every hit to ensure that accurate sync
pulses are generated.
Sync signal is enabled in IEP with a sync pulse width that is relative to the sync signal generation interval.
This sync is equivalent to the 1PPS output and should not be confused with PTP Sync frame.
See Firmware design for more details.

 For AM335x/AM437x class of devices, the entire design is based on the assumption that CMP0
event is 1 second (IEP wraps around after 1s) and all line delay measurement transactions are
completed within 1s. Any violation of this assumption or setting the CMP0 event to another value
will result in issues.

 Nanosecond counter (For AM3/AM4): This is the 32 bit IEP hardware timer. All timestamps are
with reference to this. CMP0 event is programmed to 1 second in PTP driver and reset on
wraparound event is enabled in CMP_CFG register so this counter wraps around when it reaches
1s value.

 Seconds counter (For AM3/AM4): This is a 64 bit (48 bits are used) timer in software and
corresponds to the second's field of PTP origin timestamp. PRU0 checks for the CMP0 event in
Micro Scheduler and increments this counter on every reset event. The value resides in shared
memory. (See Firmware Memory Map)

 For AM57x class of devices which support a 64 bit IEP counter the clock is implemented as a free
running counterFor the 64-bit IEP implementation there's only one nanosecond counter which
contains the combined value. For example a value of 5 seconds and 10 nanoseconds would be
stored in the 64-bit counter as 5 * 10^9 + 10 nanoseconds.

For AM5 class of devices (with 64 bit IEP) the sync interval must not be configured such that the
1000000000 ns or 1 seconds is not an integral value of it. This will lead to sync signal generation which is
not at the second boundary, this might impact synchronizing other devices using the sync output. For
AM3/AM4 class of devices it does not matter because IEP wraps around after 1 sec and sync output is
guaranteed to be aligned with start of second.

3.1.18 Rx Interrupt Pacing

3.1.18.1 Brief Overview of Rx Interrupt Pacing

Interrupt pacing enables the firmware to fire interrupts for received packets less often, reducing the
amount of interrupts the host needs to service, potentially freeing up processing. In this implementation, a
timer is set and packets received within the timer interval set a flag to trigger an interrupt at timer
expiration. An ‘adaptive’ configuration allows packets received when the queue is empty to trigger an
interrupt even if the timer interval is not expired. Interrupt pacing is configurable by the host driver via
control byte.

3.1.18.2 Rx Interrupt Pacing Register Usage and Source Files

Page 54 of 58 Document Version 1.0

ICSS Ethernet MAC

File Name Description

emac_MII_Rcv.asm Changes to set pending interrupt flag or trigger interrupt immediately

microscheduler.asm
Addition to background task to manage pacing timer and trigger interrupt if

expired and interrupts pending

Table 26: Rx Interrupt Pacing Source Code Files List

3.1.18.3 Rx Interrupt Pacing Parameters and Memory Map

Parameter
Size

(bytes)
Description

INTR_PAC_STATUS_OFFSET_PRU0
1 Enable/disable RX pacing on PRU0

(0=disabled, 1=enabled, 2=enabled+adaptive)

INTR_PAC_STATUS_OFFSET_PRU1
1 Enable/disable RX pacing on PRU1

(0=disabled, 1=enabled, 2=enabled+adaptive)

INTR_PAC_PREV_TS_OFFSET_PRU0 4 Offset of previous ECAP timer value for PRU0

INTR_PAC_PREV_TS_OFFSET_PRU1 4 Offset of previous ECAP timer value for PRU1

INTR_PAC_TMR_EXP_OFFSET_PRU0 4 Offset of timer expiration value for PRU0

INTR_PAC_TMR_EXP_OFFSET_PRU1 4 Offset of timer expiration value for PRU1

Table 27: Rx Interrupt Pacing Parameters

3.1.18.4 Rx Interrupt Pacing Macros

There are no Rx Interrupt Pacing specific macros.

3.1.18.5 Rx Interrupt Pacing Assumptions

Rx interrupt pacing assumes:

 ECAP timer is used only for Rx interrupt pacing functionality, or is at least not modified by other
functionality

 Pacing disabled by default unless enabled by driver, which will set timer expiration values as well

Page 55 of 58 Document Version 1.0

ICSS Ethernet MAC

Firmware Macros Description

ICSS EMAC Macros are as follows:

Macro Source File Remarks

M_MS_TEF_ICSS_REV1 micro_scheduler.h
Set of instructions to execute when
Task Execution is Finished (TEF)
for Revision1 device types

M_MS_TEF_ICSS_REV2 micro_scheduler.h
Set of instructions to execute when
Task Execution is Finished (TEF)
for Revision2 device types

M_MS_RX_EOF_CHECK_ICSS_REV1 micro_scheduler.h
Check for RX EOF on Revision1
device types

M_MS_RX_EOF_CHECK_ICSS_REV2 micro_scheduler.h
Check for RX EOF on Revision2
device types

M_RCV_RX_EOF_CHECK_ICSS_REV1 emac_MII_Rcv.h
Check for RX EOF on Revision1
device types

M_RCV_RX_EOF_CHECK_ICSS_REV2 emac_MII_Rcv.h
Check for RX EOF on Revision2
device types

M_RCV_RX_EOF_CLEAR_INTC_ICSS_R
EV1

emac_MII_Rcv.h
Clear RX EOF system event in
INTC on Revision1 device types

M_RCV_RX_EOF_CLEAR_INTC_ICSS_R
EV2

emac_MII_Rcv.h
Clear RX EOF system event in
INTC on Revision2 device types

M_XMT_RX_EOF_CHECK_ICSS_REV1 emac_MII_Xmt.h
Check for RX EOF on Revision1
device types

M_XMT_RX_EOF_CHECK_ICSS_REV2 emac_MII_Xmt.h
Check for RX EOF on Revision2
device types

M_XMT_GET_TXSOF_ICSS_REV1 emac_MII_Xmt.h
Get TX SOF on Revision1 device
types for fill level calculation

M_XMT_FILL_LEVEL_CALC_ICSS_REV1 emac_MII_Xmt.h
Fill level calculation on Revision1
device types

M_XMT_FILL_LEVEL_CALC_ICSS_REV2 emac_MII_Xmt.h
Fill level calculation on Revision2
device types

M_XMT_INSERT_CRC_ICSS_REV1 emac_MII_Xmt.h
Insert the CRC in outgoing frame
on SOC_ICSS_REV1

M_XMT_INSERT_CRC_ICSS_REV2 emac_MII_Xmt.h
Insert the CRC in outgoing frame
on SOC_ICSS_REV2

M_XMT_UNDER_OVER_FLOW_CHECK_
ICSS_REV2

emac_MII_Xmt.h
Check underflow and overflow flags
on Revision2 device types

M_TTS_XMT_SCHEDULER emac_tts.h
Checks which queue has the
packet and sets appropriate bits
(scheduler modification for TTS)

M_TTS_MISSED_CYCLE_CHECK emac_tts.h
Checks if cycle was missed by RT
frame and updates missed_cycle
counter

M_CHECK_TTS_ENABLE emac_tts.h
Check if time triggered send has
been enabled by the host

M_TTS_SET_CMP0_IEP_WRAP emac_tts.h
Sets Compare 0 IEP to wraparound
at 1s. (Revision1 specific)

M_TTS_CFG_CONDITIONAL_CONSTRU
CT

emac_tts.h
Check essential conditions before
TTS configuration

M_SET_MIIRT_TXCFG_TX_ENABLE emac_tts.h
Set TX_ENABLE bit in
MIIRT_TXCFG register if TTS is
enabled

M_TTS_CMP0_CMP7_CHECK emac_tts.h

Checks for CMP0 and CMP7
event, which are set for IEP
counter wraparound (Revision1
specific)

M_TTS_CMP3_CMP4_CHECK emac_tts.h
Checks for CMP3 and CMP4 event
and then clears
ICSS_EMAC_TTS_INSERT_CYC_

Page 56 of 58 Document Version 1.0

ICSS Ethernet MAC

FRAME_EVENT

M_TTS_CYC_FRAME_NOTIFICATION emac_tts.h

Sets
ICSS_EMAC_TTS_INSERT_CYC_
FRAME_EVENT bit to notify that it
is time to insert cyc frame

M_TTS_TX_SOF_PREV_STORE emac_tts.h
Saves TX_SOF of previous packet
to PRU DMEM0/1

M_TTS_TX_SOF_CYC_STORE emac_tts.h
Saves TX_SOF of current cyclic
packet

M_TTS_TX_SOF_COMPARE_ICSS_REV
2

emac_tts.h
Compares previous and current TX
SOF

M_TTS_TX_SOF_COMPARE_ICSS_REV
1

emac_tts.h
Compares previous and current TX
SOF

M_TTS_FIFO_FILL_MOD emac_tts.h
Needed to modify FIFO fill level
based on CMP event status

M_MULTICAST_TABLE_SEARCH_OP emac_MII_Rcv.h Multicast filtering table lookup

M_VLAN_FLTR_SRCH_OP emac_MII_Rcv.h VLAN filtering table lookup

M_GPTP_CHECK_AND_SET_FLAGS Icss_ptp_macro.h
Check if Rx frame is PTP and
set flag accordingly

M_GPTP_ASSIGN_QOS Icss_ptp_macro.h
If PTP rx flag is set then send to
highest priority queue

M_GPTP_SET_CALLBACK_INTERR
UPT

Icss_ptp_macro.h
Sets Tx callback interrupt
based on R22 flag

M_GPTP_TX_PRE_PROC Icss_ptp_macro.h
Checks for PTP frame in Tx
context

Table 28: ICSS EMAC Macros

Page 57 of 58 Document Version 1.0

ICSS Ethernet MAC

3.2 Firmware Sources Description

ICSS EMAC firmware source code includes the following files:

Source File Remarks

firmware_version.h ICSS EMAC Firmware Version Control

icss_defines.h ICSS Global Defines

emac_tts.h ICSS EMAC Time Triggered Send Macros and Defines

emac_tts.asm ICSS EMAC Time Triggered Send Functions

icss_iep_reg.h ICSS Industrial Ethernet Peripheral Registers Definition

icss_intc_reg.h ICSS Interrupt Controller Module Registers Definition

icss_macros.h Implements Common Macros & Defines

icss_miirt_regs.h ICSS MII_RT Module Registers Definition

icss_emacSwitch.h Definitions and Mapping of Ethernet MAC over PRU

micro_scheduler.h ICSS Defines and Macros used by Micro_Scheduler

micro_scheduler.asm Round-robin based Micro_Scheduler which controls program flow

emac_MII_Rcv.h Defines and Macros to be used in Receive Task

emac_MII_Rcv.asm Receive Task Functions

emac_MII_Xmt.h Defines and Macros to be used in Transmit Task

emac_MII_Xmt.asm Transmit Task Functions

emac_statistics.asm Statistics Task

Table 29: Firmware Sources Description

Page 58 of 58 Document Version 1.0

ICSS Ethernet MAC

4 Revision History

Version # Date Author Name Revision History

0.1 14 June 2016 Anjandeep Sahni

First Draft

Based on

AM335x_ICSS_Switch_Firmware_Design.pdf

0.2 07 July 2016 Anjandeep Sahni Fixed typo in QoS section.

0.3 28 June 2017 Suraj Das

Modified the source code & design guide to

mention PRU revision. Modified files to used

with newer file format i.e. *asm,*.h. Also,

mentioned modified function based on new

code.

0.4 6 July 2017 Suraj Das
Removed MII spec table as per review

comments

0.5 6 September 2017 Suraj Das Updated with promiscuous mode information

0.6 16 April 2018 Aravind Batni
Document why bit 20 on R31 for RX_EOF

can’t be used on AM335x and AM437x

0.7 9/27/2018 Aravind Batni Updates to include Multicast, VLAN and PTP

0.8 19 March 2019 Aaron Kramer Update to include RX Interrupt Pacing

Table 30: Revision History

