// Copyright 2013 The Flutter Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "impeller/geometry/matrix.h" #include #include namespace impeller { Matrix::Matrix(const MatrixDecomposition& d) : Matrix() { /* * Apply perspective. */ for (int i = 0; i < 4; i++) { e[i][3] = d.perspective.e[i]; } /* * Apply translation. */ for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { e[3][i] += d.translation.e[j] * e[j][i]; } } /* * Apply rotation. */ Matrix rotation; const auto x = -d.rotation.x; const auto y = -d.rotation.y; const auto z = -d.rotation.z; const auto w = d.rotation.w; /* * Construct a composite rotation matrix from the quaternion values. */ rotation.e[0][0] = 1.0 - 2.0 * (y * y + z * z); rotation.e[0][1] = 2.0 * (x * y - z * w); rotation.e[0][2] = 2.0 * (x * z + y * w); rotation.e[1][0] = 2.0 * (x * y + z * w); rotation.e[1][1] = 1.0 - 2.0 * (x * x + z * z); rotation.e[1][2] = 2.0 * (y * z - x * w); rotation.e[2][0] = 2.0 * (x * z - y * w); rotation.e[2][1] = 2.0 * (y * z + x * w); rotation.e[2][2] = 1.0 - 2.0 * (x * x + y * y); *this = *this * rotation; /* * Apply shear. */ Matrix shear; if (d.shear.e[2] != 0) { shear.e[2][1] = d.shear.e[2]; *this = *this * shear; } if (d.shear.e[1] != 0) { shear.e[2][1] = 0.0; shear.e[2][0] = d.shear.e[1]; *this = *this * shear; } if (d.shear.e[0] != 0) { shear.e[2][0] = 0.0; shear.e[1][0] = d.shear.e[0]; *this = *this * shear; } /* * Apply scale. */ for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { e[i][j] *= d.scale.e[i]; } } } Matrix Matrix::operator+(const Matrix& o) const { return Matrix( m[0] + o.m[0], m[1] + o.m[1], m[2] + o.m[2], m[3] + o.m[3], // m[4] + o.m[4], m[5] + o.m[5], m[6] + o.m[6], m[7] + o.m[7], // m[8] + o.m[8], m[9] + o.m[9], m[10] + o.m[10], m[11] + o.m[11], // m[12] + o.m[12], m[13] + o.m[13], m[14] + o.m[14], m[15] + o.m[15] // ); } Matrix Matrix::Invert() const { Matrix tmp{ m[5] * m[10] * m[15] - m[5] * m[11] * m[14] - m[9] * m[6] * m[15] + m[9] * m[7] * m[14] + m[13] * m[6] * m[11] - m[13] * m[7] * m[10], -m[1] * m[10] * m[15] + m[1] * m[11] * m[14] + m[9] * m[2] * m[15] - m[9] * m[3] * m[14] - m[13] * m[2] * m[11] + m[13] * m[3] * m[10], m[1] * m[6] * m[15] - m[1] * m[7] * m[14] - m[5] * m[2] * m[15] + m[5] * m[3] * m[14] + m[13] * m[2] * m[7] - m[13] * m[3] * m[6], -m[1] * m[6] * m[11] + m[1] * m[7] * m[10] + m[5] * m[2] * m[11] - m[5] * m[3] * m[10] - m[9] * m[2] * m[7] + m[9] * m[3] * m[6], -m[4] * m[10] * m[15] + m[4] * m[11] * m[14] + m[8] * m[6] * m[15] - m[8] * m[7] * m[14] - m[12] * m[6] * m[11] + m[12] * m[7] * m[10], m[0] * m[10] * m[15] - m[0] * m[11] * m[14] - m[8] * m[2] * m[15] + m[8] * m[3] * m[14] + m[12] * m[2] * m[11] - m[12] * m[3] * m[10], -m[0] * m[6] * m[15] + m[0] * m[7] * m[14] + m[4] * m[2] * m[15] - m[4] * m[3] * m[14] - m[12] * m[2] * m[7] + m[12] * m[3] * m[6], m[0] * m[6] * m[11] - m[0] * m[7] * m[10] - m[4] * m[2] * m[11] + m[4] * m[3] * m[10] + m[8] * m[2] * m[7] - m[8] * m[3] * m[6], m[4] * m[9] * m[15] - m[4] * m[11] * m[13] - m[8] * m[5] * m[15] + m[8] * m[7] * m[13] + m[12] * m[5] * m[11] - m[12] * m[7] * m[9], -m[0] * m[9] * m[15] + m[0] * m[11] * m[13] + m[8] * m[1] * m[15] - m[8] * m[3] * m[13] - m[12] * m[1] * m[11] + m[12] * m[3] * m[9], m[0] * m[5] * m[15] - m[0] * m[7] * m[13] - m[4] * m[1] * m[15] + m[4] * m[3] * m[13] + m[12] * m[1] * m[7] - m[12] * m[3] * m[5], -m[0] * m[5] * m[11] + m[0] * m[7] * m[9] + m[4] * m[1] * m[11] - m[4] * m[3] * m[9] - m[8] * m[1] * m[7] + m[8] * m[3] * m[5], -m[4] * m[9] * m[14] + m[4] * m[10] * m[13] + m[8] * m[5] * m[14] - m[8] * m[6] * m[13] - m[12] * m[5] * m[10] + m[12] * m[6] * m[9], m[0] * m[9] * m[14] - m[0] * m[10] * m[13] - m[8] * m[1] * m[14] + m[8] * m[2] * m[13] + m[12] * m[1] * m[10] - m[12] * m[2] * m[9], -m[0] * m[5] * m[14] + m[0] * m[6] * m[13] + m[4] * m[1] * m[14] - m[4] * m[2] * m[13] - m[12] * m[1] * m[6] + m[12] * m[2] * m[5], m[0] * m[5] * m[10] - m[0] * m[6] * m[9] - m[4] * m[1] * m[10] + m[4] * m[2] * m[9] + m[8] * m[1] * m[6] - m[8] * m[2] * m[5]}; Scalar det = m[0] * tmp.m[0] + m[1] * tmp.m[4] + m[2] * tmp.m[8] + m[3] * tmp.m[12]; if (det == 0) { return {}; } det = 1.0 / det; return {tmp.m[0] * det, tmp.m[1] * det, tmp.m[2] * det, tmp.m[3] * det, tmp.m[4] * det, tmp.m[5] * det, tmp.m[6] * det, tmp.m[7] * det, tmp.m[8] * det, tmp.m[9] * det, tmp.m[10] * det, tmp.m[11] * det, tmp.m[12] * det, tmp.m[13] * det, tmp.m[14] * det, tmp.m[15] * det}; } Scalar Matrix::GetDeterminant() const { auto a00 = e[0][0]; auto a01 = e[0][1]; auto a02 = e[0][2]; auto a03 = e[0][3]; auto a10 = e[1][0]; auto a11 = e[1][1]; auto a12 = e[1][2]; auto a13 = e[1][3]; auto a20 = e[2][0]; auto a21 = e[2][1]; auto a22 = e[2][2]; auto a23 = e[2][3]; auto a30 = e[3][0]; auto a31 = e[3][1]; auto a32 = e[3][2]; auto a33 = e[3][3]; auto b00 = a00 * a11 - a01 * a10; auto b01 = a00 * a12 - a02 * a10; auto b02 = a00 * a13 - a03 * a10; auto b03 = a01 * a12 - a02 * a11; auto b04 = a01 * a13 - a03 * a11; auto b05 = a02 * a13 - a03 * a12; auto b06 = a20 * a31 - a21 * a30; auto b07 = a20 * a32 - a22 * a30; auto b08 = a20 * a33 - a23 * a30; auto b09 = a21 * a32 - a22 * a31; auto b10 = a21 * a33 - a23 * a31; auto b11 = a22 * a33 - a23 * a32; return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; } /* * Adapted for Impeller from Graphics Gems: * http://www.realtimerendering.com/resources/GraphicsGems/gemsii/unmatrix.c */ std::optional Matrix::Decompose() const { /* * Normalize the matrix. */ Matrix self = *this; if (self.e[3][3] == 0) { return std::nullopt; } for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { self.e[i][j] /= self.e[3][3]; } } /* * `perspectiveMatrix` is used to solve for perspective, but it also provides * an easy way to test for singularity of the upper 3x3 component. */ Matrix perpectiveMatrix = self; for (int i = 0; i < 3; i++) { perpectiveMatrix.e[i][3] = 0; } perpectiveMatrix.e[3][3] = 1; if (perpectiveMatrix.GetDeterminant() == 0.0) { return std::nullopt; } MatrixDecomposition result; /* * ========================================================================== * First, isolate perspective. * ========================================================================== */ if (self.e[0][3] != 0.0 || self.e[1][3] != 0.0 || self.e[2][3] != 0.0) { /* * prhs is the right hand side of the equation. */ const Vector4 rightHandSide(self.e[0][3], // self.e[1][3], // self.e[2][3], // self.e[3][3]); /* * Solve the equation by inverting `perspectiveMatrix` and multiplying * prhs by the inverse. */ result.perspective = perpectiveMatrix.Invert().Transpose() * rightHandSide; /* * Clear the perspective partition. */ self.e[0][3] = self.e[1][3] = self.e[2][3] = 0; self.e[3][3] = 1; } /* * ========================================================================== * Next, the translation. * ========================================================================== */ result.translation = {self.e[3][0], self.e[3][1], self.e[3][2]}; self.e[3][0] = self.e[3][1] = self.e[3][2] = 0.0; /* * ========================================================================== * Next, the scale and shear. * ========================================================================== */ Vector3 row[3]; for (int i = 0; i < 3; i++) { row[i].x = self.e[i][0]; row[i].y = self.e[i][1]; row[i].z = self.e[i][2]; } /* * Compute X scale factor and normalize first row. */ result.scale.x = row[0].GetLength(); row[0] = row[0].Normalize(); /* * Compute XY shear factor and make 2nd row orthogonal to 1st. */ result.shear.xy = row[0].Dot(row[1]); row[1] = Vector3::Combine(row[1], 1.0, row[0], -result.shear.xy); /* * Compute Y scale and normalize 2nd row. */ result.scale.y = row[1].GetLength(); row[1] = row[1].Normalize(); result.shear.xy /= result.scale.y; /* * Compute XZ and YZ shears, orthogonalize 3rd row. */ result.shear.xz = row[0].Dot(row[2]); row[2] = Vector3::Combine(row[2], 1.0, row[0], -result.shear.xz); result.shear.yz = row[1].Dot(row[2]); row[2] = Vector3::Combine(row[2], 1.0, row[1], -result.shear.yz); /* * Next, get Z scale and normalize 3rd row. */ result.scale.z = row[2].GetLength(); row[2] = row[2].Normalize(); result.shear.xz /= result.scale.z; result.shear.yz /= result.scale.z; /* * At this point, the matrix (in rows[]) is orthonormal. * Check for a coordinate system flip. If the determinant * is -1, then negate the matrix and the scaling factors. */ if (row[0].Dot(row[1].Cross(row[2])) < 0) { result.scale.x *= -1; result.scale.y *= -1; result.scale.z *= -1; for (int i = 0; i < 3; i++) { row[i].x *= -1; row[i].y *= -1; row[i].z *= -1; } } /* * ========================================================================== * Finally, get the rotations out. * ========================================================================== */ result.rotation.x = 0.5 * sqrt(fmax(1.0 + row[0].x - row[1].y - row[2].z, 0.0)); result.rotation.y = 0.5 * sqrt(fmax(1.0 - row[0].x + row[1].y - row[2].z, 0.0)); result.rotation.z = 0.5 * sqrt(fmax(1.0 - row[0].x - row[1].y + row[2].z, 0.0)); result.rotation.w = 0.5 * sqrt(fmax(1.0 + row[0].x + row[1].y + row[2].z, 0.0)); if (row[2].y > row[1].z) { result.rotation.x = -result.rotation.x; } if (row[0].z > row[2].x) { result.rotation.y = -result.rotation.y; } if (row[1].x > row[0].y) { result.rotation.z = -result.rotation.z; } return result; } uint64_t MatrixDecomposition::GetComponentsMask() const { uint64_t mask = 0; Quaternion noRotation(0.0, 0.0, 0.0, 1.0); if (rotation != noRotation) { mask = mask | static_cast(Component::kRotation); } Vector4 defaultPerspective(0.0, 0.0, 0.0, 1.0); if (perspective != defaultPerspective) { mask = mask | static_cast(Component::kPerspective); } Shear noShear(0.0, 0.0, 0.0); if (shear != noShear) { mask = mask | static_cast(Component::kShear); } Vector3 defaultScale(1.0, 1.0, 1.0); if (scale != defaultScale) { mask = mask | static_cast(Component::kScale); } Vector3 defaultTranslation(0.0, 0.0, 0.0); if (translation != defaultTranslation) { mask = mask | static_cast(Component::kTranslation); } return mask; } } // namespace impeller