/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "bench/Benchmark.h" #include "bench/ResultsWriter.h" #include "bench/SkSLBench.h" #include "include/core/SkCanvas.h" #include "src/base/SkArenaAlloc.h" #include "src/core/SkRasterPipeline.h" #include "src/gpu/ganesh/GrCaps.h" #include "src/gpu/ganesh/GrRecordingContextPriv.h" #include "src/gpu/ganesh/mock/GrMockCaps.h" #include "src/sksl/SkSLCompiler.h" #include "src/sksl/SkSLModuleLoader.h" #include "src/sksl/SkSLParser.h" #include "src/sksl/codegen/SkSLRasterPipelineBuilder.h" #include "src/sksl/codegen/SkSLRasterPipelineCodeGenerator.h" #include "src/sksl/ir/SkSLFunctionDeclaration.h" #include "src/sksl/ir/SkSLProgram.h" #include #include "src/sksl/generated/sksl_shared.minified.sksl" #include "src/sksl/generated/sksl_compute.minified.sksl" #include "src/sksl/generated/sksl_frag.minified.sksl" #include "src/sksl/generated/sksl_gpu.minified.sksl" #include "src/sksl/generated/sksl_public.minified.sksl" #include "src/sksl/generated/sksl_rt_shader.minified.sksl" #include "src/sksl/generated/sksl_vert.minified.sksl" #if defined(SK_GRAPHITE) #include "src/sksl/generated/sksl_graphite_frag.minified.sksl" #include "src/sksl/generated/sksl_graphite_vert.minified.sksl" #endif class SkSLCompilerStartupBench : public Benchmark { protected: const char* onGetName() override { return "sksl_compiler_startup"; } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } void onDraw(int loops, SkCanvas*) override { GrShaderCaps caps; for (int i = 0; i < loops; i++) { SkSL::Compiler compiler(&caps); } } }; DEF_BENCH(return new SkSLCompilerStartupBench();) enum class Output { kNone, kGLSL, kMetal, kSPIRV, #if defined(SK_ENABLE_SKSL_IN_RASTER_PIPELINE) kSkRP, #endif }; class SkSLCompileBench : public Benchmark { public: static const char* output_string(Output output) { switch (output) { case Output::kNone: return ""; case Output::kGLSL: return "glsl_"; case Output::kMetal: return "metal_"; case Output::kSPIRV: return "spirv_"; #if defined(SK_ENABLE_SKSL_IN_RASTER_PIPELINE) case Output::kSkRP: return "skrp_"; #endif } SkUNREACHABLE; } SkSLCompileBench(std::string name, const char* src, bool optimize, Output output) : fName(std::string("sksl_") + (optimize ? "" : "unoptimized_") + output_string(output) + name) , fSrc(src) , fCaps(GrContextOptions(), GrMockOptions()) , fCompiler(fCaps.shaderCaps()) , fOutput(output) { fSettings.fOptimize = optimize; // The test programs we compile don't follow Vulkan rules and thus produce invalid SPIR-V. // This is harmless, so long as we don't try to validate them. fSettings.fValidateSPIRV = false; this->fixUpSource(); } protected: const char* onGetName() override { return fName.c_str(); } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } bool usesRuntimeShader() const { return fOutput > Output::kSPIRV; } void fixUpSource() { auto fixup = [this](const char* input, const char* replacement) { fSrc = std::regex_replace(fSrc, std::regex(input), replacement); }; // Runtime shaders which have slightly different conventions than fragment shaders. // Perform a handful of fixups to compensate. These are hand-tuned for our current set of // test shaders and will probably need to be updated if we add more. if (this->usesRuntimeShader()) { fixup(R"(void main\(\))", "half4 main(float2 xy)"); fixup(R"(sk_FragColor =)", "return"); fixup(R"(sk_FragCoord)", "_FragCoord"); fixup(R"(uniform sampler2D )", "uniform shader "); fixup(R"((flat |noperspective |)in )", "uniform "); fixup(R"(sample\(([A-Za-z0-9_]+), ([A-Za-z0-9_]+)\))", "$01.eval($02)"); fSrc = "#version 300\nuniform float4 _FragCoord;\n" + fSrc; } } void onDraw(int loops, SkCanvas* canvas) override { const SkSL::ProgramKind kind = this->usesRuntimeShader() ? SkSL::ProgramKind::kRuntimeShader : SkSL::ProgramKind::kFragment; for (int i = 0; i < loops; i++) { std::unique_ptr program = fCompiler.convertProgram(kind, fSrc, fSettings); if (fCompiler.errorCount()) { SK_ABORT("shader compilation failed: %s\n", fCompiler.errorText().c_str()); } std::string result; switch (fOutput) { case Output::kNone: break; case Output::kGLSL: SkAssertResult(fCompiler.toGLSL(*program, &result)); break; case Output::kMetal: SkAssertResult(fCompiler.toMetal(*program, &result)); break; case Output::kSPIRV: SkAssertResult(fCompiler.toSPIRV(*program, &result)); break; #if defined(SK_ENABLE_SKSL_IN_RASTER_PIPELINE) case Output::kSkRP: SkAssertResult(CompileToSkRP(*program)); break; #endif } } } #ifdef SK_ENABLE_SKSL_IN_RASTER_PIPELINE static bool CompileToSkRP(const SkSL::Program& program) { const SkSL::FunctionDeclaration* main = program.getFunction("main"); if (!main) { return false; } // Compile our program. std::unique_ptr rasterProg = SkSL::MakeRasterPipelineProgram( program, *main->definition(), /*debugTrace=*/nullptr, /*writeTraceOps=*/false); if (!rasterProg) { return false; } // We need to supply a valid uniform range, but the uniform values inside don't actually // matter, since we aren't going to run the shader. float uniformBuffer[1024]; if (rasterProg->numUniforms() > (int)std::size(uniformBuffer)) { return false; } // Append the program to a raster pipeline. SkSTArenaAlloc<2048> alloc; SkRasterPipeline pipeline(&alloc); rasterProg->appendStages(&pipeline, &alloc, /*callbacks=*/nullptr, /*uniforms=*/SkSpan{uniformBuffer, rasterProg->numUniforms()}); return true; } #endif // SK_ENABLE_SKSL_IN_RASTER_PIPELINE private: std::string fName; std::string fSrc; GrMockCaps fCaps; SkSL::Compiler fCompiler; SkSL::ProgramSettings fSettings; Output fOutput; using INHERITED = Benchmark; }; /////////////////////////////////////////////////////////////////////////////// #if defined(SK_ENABLE_SKSL_IN_RASTER_PIPELINE) #define COMPILER_BENCH_SKRP(name, text) \ DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kSkRP);) #else #define COMPILER_BENCH_SKRP(name, text) /* SkRP is disabled; no benchmarking */ #endif #define COMPILER_BENCH(name, text) \ static constexpr char name ## _SRC[] = text; \ DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/false, Output::kNone);) \ DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kNone);) \ DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kGLSL);) \ DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kMetal);) \ DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kSPIRV);) \ COMPILER_BENCH_SKRP(name, text) // This fragment shader is from the third tile on the top row of GM_gradients_2pt_conical_outside. // To get an ES2 compatible shader, nonconstantArrayIndexSupport in GrShaderCaps is forced off. COMPILER_BENCH(large, R"( uniform float3x3 umatrix_S1_c0; uniform half4 uthresholds1_7_S1_c1_c0_c0; uniform half4 uthresholds9_13_S1_c1_c0_c0; uniform float4 uscale_S1_c1_c0_c0[4]; uniform float4 ubias_S1_c1_c0_c0[4]; uniform half uinvR1_S1_c1_c0_c1_c0; uniform half ufx_S1_c1_c0_c1_c0; uniform float3x3 umatrix_S1_c1_c0_c1; uniform half4 uleftBorderColor_S1_c1_c0; uniform half4 urightBorderColor_S1_c1_c0; uniform half urange_S1; uniform sampler2D uTextureSampler_0_S1; flat in half4 vcolor_S0; noperspective in float2 vTransformedCoords_8_S0; half4 TextureEffect_S1_c0_c0(half4 _input, float2 _coords) { return sample(uTextureSampler_0_S1, _coords).000r; } half4 MatrixEffect_S1_c0(half4 _input, float2 _coords) { return TextureEffect_S1_c0_c0(_input, float3x2(umatrix_S1_c0) * _coords.xy1); } half4 UnrolledBinaryColorizer_S1_c1_c0_c0(half4 _input, float2 _coords) { half4 _tmp_0_inColor = _input; float2 _tmp_1_coords = _coords; half t = half(_tmp_1_coords.x); float4 s; float4 b; { if (t < uthresholds1_7_S1_c1_c0_c0.y) { if (t < uthresholds1_7_S1_c1_c0_c0.x) { s = uscale_S1_c1_c0_c0[0]; b = ubias_S1_c1_c0_c0[0]; } else { s = uscale_S1_c1_c0_c0[1]; b = ubias_S1_c1_c0_c0[1]; } } else { if (t < uthresholds1_7_S1_c1_c0_c0.z) { s = uscale_S1_c1_c0_c0[2]; b = ubias_S1_c1_c0_c0[2]; } else { s = uscale_S1_c1_c0_c0[3]; b = ubias_S1_c1_c0_c0[3]; } } } return half4(half4(float(t) * s + b)); } half4 TwoPointConicalFocalLayout_S1_c1_c0_c1_c0(half4 _input) { half4 _tmp_2_inColor = _input; float2 _tmp_3_coords = vTransformedCoords_8_S0; float t = -1.0; half v = 1.0; float x_t = -1.0; if (bool(int(0))) { x_t = dot(_tmp_3_coords, _tmp_3_coords) / _tmp_3_coords.x; } else if (bool(int(0))) { x_t = length(_tmp_3_coords) - _tmp_3_coords.x * float(uinvR1_S1_c1_c0_c1_c0); } else { float temp = _tmp_3_coords.x * _tmp_3_coords.x - _tmp_3_coords.y * _tmp_3_coords.y; if (temp >= 0.0) { if (bool(int(0)) || !bool(int(1))) { x_t = -sqrt(temp) - _tmp_3_coords.x * float(uinvR1_S1_c1_c0_c1_c0); } else { x_t = sqrt(temp) - _tmp_3_coords.x * float(uinvR1_S1_c1_c0_c1_c0); } } } if (!bool(int(0))) { if (x_t <= 0.0) { v = -1.0; } } if (bool(int(1))) { if (bool(int(0))) { t = x_t; } else { t = x_t + float(ufx_S1_c1_c0_c1_c0); } } else { if (bool(int(0))) { t = -x_t; } else { t = -x_t + float(ufx_S1_c1_c0_c1_c0); } } if (bool(int(0))) { t = 1.0 - t; } return half4(half4(half(t), v, 0.0, 0.0)); } half4 MatrixEffect_S1_c1_c0_c1(half4 _input) { return TwoPointConicalFocalLayout_S1_c1_c0_c1_c0(_input); } half4 ClampedGradient_S1_c1_c0(half4 _input) { half4 _tmp_4_inColor = _input; half4 t = MatrixEffect_S1_c1_c0_c1(_tmp_4_inColor); half4 outColor; if (!bool(int(0)) && t.y < 0.0) { outColor = half4(0.0); } else if (t.x < 0.0) { outColor = uleftBorderColor_S1_c1_c0; } else if (t.x > 1.0) { outColor = urightBorderColor_S1_c1_c0; } else { outColor = UnrolledBinaryColorizer_S1_c1_c0_c0(_tmp_4_inColor, float2(half2(t.x, 0.0))); } if (bool(int(0))) { outColor.xyz *= outColor.w; } return half4(outColor); } half4 DisableCoverageAsAlpha_S1_c1(half4 _input) { _input = ClampedGradient_S1_c1_c0(_input); half4 _tmp_5_inColor = _input; return half4(_input); } half4 Dither_S1(half4 _input) { _input = DisableCoverageAsAlpha_S1_c1(_input); half4 _tmp_6_inColor = _input; half value = MatrixEffect_S1_c0(_tmp_6_inColor, sk_FragCoord.xy).w - 0.5; return half4(half4(clamp(_input.xyz + value * urange_S1, 0.0, _input.w), _input.w)); } void main() { // Stage 0, QuadPerEdgeAAGeometryProcessor half4 outputColor_S0; outputColor_S0 = vcolor_S0; const half4 outputCoverage_S0 = half4(1); half4 output_S1; output_S1 = Dither_S1(outputColor_S0); { // Xfer Processor: Porter Duff sk_FragColor = output_S1 * outputCoverage_S0; } } )"); // This fragment shader is taken from GM_BlurDrawImage. COMPILER_BENCH(medium, R"( uniform float3x3 umatrix_S1_c0; uniform float3x3 umatrix_S2_c0_c0; uniform float4 urect_S2_c0; uniform sampler2D uTextureSampler_0_S1; uniform sampler2D uTextureSampler_0_S2; flat in half4 vcolor_S0; noperspective in float2 vTransformedCoords_3_S0; half4 TextureEffect_S1_c0_c0(half4 _input) { return sample(uTextureSampler_0_S1, vTransformedCoords_3_S0); } half4 MatrixEffect_S1_c0(half4 _input) { return TextureEffect_S1_c0_c0(_input); } half4 DisableCoverageAsAlpha_S1(half4 _input) { _input = MatrixEffect_S1_c0(_input); half4 _tmp_0_inColor = _input; return half4(_input); } half4 TextureEffect_S2_c0_c0_c0(half4 _input, float2 _coords) { return sample(uTextureSampler_0_S2, _coords).000r; } half4 MatrixEffect_S2_c0_c0(half4 _input, float2 _coords) { return TextureEffect_S2_c0_c0_c0(_input, float3x2(umatrix_S2_c0_c0) * _coords.xy1); } half4 RectBlur_S2_c0(half4 _input, float2 _coords) { half4 _tmp_1_inColor = _input; float2 _tmp_2_coords = _coords; half xCoverage; half yCoverage; if (bool(int(1))) { half2 xy = max(half2(urect_S2_c0.xy - _tmp_2_coords), half2(_tmp_2_coords - urect_S2_c0.zw)); xCoverage = MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(xy.x, 0.5))).w; yCoverage = MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(xy.y, 0.5))).w; } else { half4 rect = half4(half2(urect_S2_c0.xy - _tmp_2_coords), half2(_tmp_2_coords - urect_S2_c0.zw)); xCoverage = (1.0 - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.x, 0.5))).w) - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.z, 0.5))).w; yCoverage = (1.0 - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.y, 0.5))).w) - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.w, 0.5))).w; } return half4((_input * xCoverage) * yCoverage); } half4 DeviceSpace_S2(half4 _input) { return RectBlur_S2_c0(_input, sk_FragCoord.xy); } void main() { // Stage 0, QuadPerEdgeAAGeometryProcessor half4 outputColor_S0; outputColor_S0 = vcolor_S0; const half4 outputCoverage_S0 = half4(1); half4 output_S1; output_S1 = DisableCoverageAsAlpha_S1(outputColor_S0); half4 output_S2; output_S2 = DeviceSpace_S2(outputCoverage_S0); { // Xfer Processor: Porter Duff sk_FragColor = output_S1 * output_S2; } } )"); // This fragment shader is taken from GM_lcdtext. COMPILER_BENCH(small, R"( uniform sampler2D uTextureSampler_0_S0; noperspective in float2 vTextureCoords_S0; flat in float vTexIndex_S0; noperspective in half4 vinColor_S0; void main() { // Stage 0, BitmapText half4 outputColor_S0; outputColor_S0 = vinColor_S0; half4 texColor; { texColor = sample(uTextureSampler_0_S0, vTextureCoords_S0).rrrr; } half4 outputCoverage_S0 = texColor; { // Xfer Processor: Porter Duff sk_FragColor = outputColor_S0 * outputCoverage_S0; } } )"); COMPILER_BENCH(tiny, "void main() { sk_FragColor = half4(1); }"); #if defined(SK_BUILD_FOR_UNIX) #include static int64_t heap_bytes_used() { return (int64_t)mallinfo().uordblks; } #elif defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS) #include static int64_t heap_bytes_used() { malloc_statistics_t stats; malloc_zone_pressure_relief(malloc_default_zone(), 0); malloc_zone_statistics(malloc_default_zone(), &stats); return (int64_t)stats.size_in_use; } #else static int64_t heap_bytes_used() { return -1; } #endif static void bench(NanoJSONResultsWriter* log, const char* name, int bytes) { SkDEBUGCODE(SkDebugf("%s: %d bytes\n", name, bytes);) log->beginObject(name); // test log->beginObject("meta"); // config log->appendS32("bytes", bytes); // sub_result log->endObject(); // config log->endObject(); // test } // These benchmarks aren't timed, they produce memory usage statistics. They run standalone, and // directly add their results to the nanobench log. void RunSkSLModuleBenchmarks(NanoJSONResultsWriter* log) { // Heap used by a default compiler (with no modules loaded) int64_t before = heap_bytes_used(); GrShaderCaps caps; SkSL::Compiler compiler(&caps); int baselineBytes = heap_bytes_used(); if (baselineBytes >= 0) { baselineBytes = (baselineBytes - before); bench(log, "sksl_compiler_baseline", baselineBytes); } // Heap used by a compiler with the two main GPU modules (fragment + vertex) and runtime effects // (shader + color filter + blender) loaded. Ganesh will load all of these in regular usage. before = heap_bytes_used(); compiler.moduleForProgramKind(SkSL::ProgramKind::kVertex); compiler.moduleForProgramKind(SkSL::ProgramKind::kFragment); compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeColorFilter); compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeShader); compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeBlender); compiler.moduleForProgramKind(SkSL::ProgramKind::kPrivateRuntimeColorFilter); compiler.moduleForProgramKind(SkSL::ProgramKind::kPrivateRuntimeShader); compiler.moduleForProgramKind(SkSL::ProgramKind::kPrivateRuntimeBlender); int64_t gpuBytes = heap_bytes_used(); if (gpuBytes >= 0) { gpuBytes = (gpuBytes - before) + baselineBytes; bench(log, "sksl_compiler_gpu", gpuBytes); } #if defined(SK_GRAPHITE) // Heap used by a compiler with the Graphite modules loaded. before = heap_bytes_used(); compiler.moduleForProgramKind(SkSL::ProgramKind::kGraphiteVertex); compiler.moduleForProgramKind(SkSL::ProgramKind::kGraphiteFragment); int64_t graphiteBytes = heap_bytes_used(); if (graphiteBytes >= 0) { graphiteBytes = (graphiteBytes - before) + gpuBytes; bench(log, "sksl_compiler_graphite", graphiteBytes); } #endif // Heap used by a compiler with compute-shader support loaded. before = heap_bytes_used(); compiler.moduleForProgramKind(SkSL::ProgramKind::kCompute); int64_t computeBytes = heap_bytes_used(); if (computeBytes >= 0) { computeBytes = (computeBytes - before) + baselineBytes; bench(log, "sksl_compiler_compute", computeBytes); } // Report the minified module sizes. int compilerGPUBinarySize = std::size(SKSL_MINIFIED_sksl_shared) + std::size(SKSL_MINIFIED_sksl_gpu) + std::size(SKSL_MINIFIED_sksl_vert) + std::size(SKSL_MINIFIED_sksl_frag) + std::size(SKSL_MINIFIED_sksl_public) + std::size(SKSL_MINIFIED_sksl_rt_shader); bench(log, "sksl_binary_size_gpu", compilerGPUBinarySize); #if defined(SK_GRAPHITE) int compilerGraphiteBinarySize = std::size(SKSL_MINIFIED_sksl_graphite_frag) + std::size(SKSL_MINIFIED_sksl_graphite_vert); bench(log, "sksl_binary_size_graphite", compilerGraphiteBinarySize); #endif int compilerComputeBinarySize = std::size(SKSL_MINIFIED_sksl_compute); bench(log, "sksl_binary_size_compute", compilerComputeBinarySize); } class SkSLModuleLoaderBench : public Benchmark { public: SkSLModuleLoaderBench(const char* name, std::vector moduleList) : fName(name), fModuleList(std::move(moduleList)) {} const char* onGetName() override { return fName; } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } int calculateLoops(int defaultLoops) const override { return 1; } void onPreDraw(SkCanvas*) override { SkSL::ModuleLoader::Get().unloadModules(); } void onDraw(int loops, SkCanvas*) override { SkASSERT(loops == 1); GrShaderCaps caps; SkSL::Compiler compiler(&caps); for (SkSL::ProgramKind kind : fModuleList) { compiler.moduleForProgramKind(kind); } } const char* fName; std::vector fModuleList; }; DEF_BENCH(return new SkSLModuleLoaderBench("sksl_module_loader_ganesh", { SkSL::ProgramKind::kVertex, SkSL::ProgramKind::kFragment, SkSL::ProgramKind::kRuntimeColorFilter, SkSL::ProgramKind::kRuntimeShader, SkSL::ProgramKind::kRuntimeBlender, SkSL::ProgramKind::kPrivateRuntimeColorFilter, SkSL::ProgramKind::kPrivateRuntimeShader, SkSL::ProgramKind::kPrivateRuntimeBlender, SkSL::ProgramKind::kCompute, });) DEF_BENCH(return new SkSLModuleLoaderBench("sksl_module_loader_graphite", { SkSL::ProgramKind::kVertex, SkSL::ProgramKind::kFragment, SkSL::ProgramKind::kRuntimeColorFilter, SkSL::ProgramKind::kRuntimeShader, SkSL::ProgramKind::kRuntimeBlender, SkSL::ProgramKind::kPrivateRuntimeColorFilter, SkSL::ProgramKind::kPrivateRuntimeShader, SkSL::ProgramKind::kPrivateRuntimeBlender, SkSL::ProgramKind::kCompute, SkSL::ProgramKind::kGraphiteVertex, SkSL::ProgramKind::kGraphiteFragment, });)