/* * Copyright 2023 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/codec/SkAndroidCodec.h" #include "include/codec/SkCodec.h" #include "include/core/SkBitmap.h" #include "include/core/SkCanvas.h" #include "include/core/SkColor.h" #include "include/core/SkShader.h" #include "include/core/SkSize.h" #include "include/core/SkStream.h" #include "include/core/SkTypes.h" #include "include/encode/SkJpegEncoder.h" #include "include/private/SkGainmapInfo.h" #include "include/private/SkGainmapShader.h" #include "include/private/SkJpegGainmapEncoder.h" #include "src/codec/SkJpegCodec.h" #include "src/codec/SkJpegConstants.h" #include "src/codec/SkJpegMultiPicture.h" #include "src/codec/SkJpegSegmentScan.h" #include "src/codec/SkJpegSourceMgr.h" #include "tests/Test.h" #include "tools/Resources.h" #include #include #include #include #include namespace { // A test stream to stress the different SkJpegSourceMgr sub-classes. class TestStream : public SkStream { public: enum class Type { kUnseekable, // SkJpegUnseekableSourceMgr kSeekable, // SkJpegBufferedSourceMgr kMemoryMapped, // SkJpegMemorySourceMgr }; TestStream(Type type, SkStream* stream) : fStream(stream) , fSeekable(type != Type::kUnseekable) , fMemoryMapped(type == Type::kMemoryMapped) {} ~TestStream() override {} size_t read(void* buffer, size_t size) override { return fStream->read(buffer, size); } size_t peek(void* buffer, size_t size) const override { return fStream->peek(buffer, size); } bool isAtEnd() const override { return fStream->isAtEnd(); } bool rewind() override { if (!fSeekable) { return false; } return fStream->rewind(); } bool hasPosition() const override { if (!fSeekable) { return false; } return fStream->hasPosition(); } size_t getPosition() const override { if (!fSeekable) { return 0; } return fStream->hasPosition(); } bool seek(size_t position) override { if (!fSeekable) { return 0; } return fStream->seek(position); } bool move(long offset) override { if (!fSeekable) { return 0; } return fStream->move(offset); } bool hasLength() const override { if (!fMemoryMapped) { return false; } return fStream->hasLength(); } size_t getLength() const override { if (!fMemoryMapped) { return 0; } return fStream->getLength(); } const void* getMemoryBase() override { if (!fMemoryMapped) { return nullptr; } return fStream->getMemoryBase(); } private: SkStream* const fStream; bool fSeekable = false; bool fMemoryMapped = false; }; } // namespace DEF_TEST(Codec_jpegSegmentScan, r) { const struct Rec { const char* path; size_t sosSegmentCount; size_t eoiSegmentCount; size_t testSegmentIndex; uint8_t testSegmentMarker; size_t testSegmentOffset; uint16_t testSegmentParameterLength; } recs[] = { {"images/wide_gamut_yellow_224_224_64.jpeg", 11, 15, 10, 0xda, 9768, 12}, {"images/CMYK.jpg", 7, 8, 1, 0xee, 2, 14}, {"images/b78329453.jpeg", 10, 23, 3, 0xe2, 154, 540}, {"images/brickwork-texture.jpg", 8, 28, 12, 0xc4, 34183, 42}, {"images/brickwork_normal-map.jpg", 8, 28, 27, 0xd9, 180612, 0}, {"images/cmyk_yellow_224_224_32.jpg", 19, 23, 2, 0xed, 854, 2828}, {"images/color_wheel.jpg", 10, 11, 2, 0xdb, 20, 67}, {"images/cropped_mandrill.jpg", 10, 11, 4, 0xc0, 158, 17}, {"images/dog.jpg", 10, 11, 5, 0xc4, 177, 28}, {"images/ducky.jpg", 12, 13, 10, 0xc4, 3718, 181}, {"images/exif-orientation-2-ur.jpg", 11, 12, 2, 0xe1, 20, 130}, {"images/flutter_logo.jpg", 9, 27, 21, 0xda, 5731, 8}, {"images/grayscale.jpg", 6, 16, 9, 0xda, 327, 8}, {"images/icc-v2-gbr.jpg", 12, 25, 24, 0xd9, 43832, 0}, {"images/mandrill_512_q075.jpg", 10, 11, 7, 0xc4, 393, 31}, {"images/mandrill_cmyk.jpg", 19, 35, 16, 0xdd, 574336, 4}, {"images/mandrill_h1v1.jpg", 10, 11, 1, 0xe0, 2, 16}, {"images/mandrill_h2v1.jpg", 10, 11, 0, 0xd8, 0, 0}, {"images/randPixels.jpg", 10, 11, 6, 0xc4, 200, 30}, {"images/wide_gamut_yellow_224_224_64.jpeg", 11, 15, 10, 0xda, 9768, 12}, }; for (const auto& rec : recs) { auto stream = GetResourceAsStream(rec.path); if (!stream) { continue; } // Scan all the way to EndOfImage. auto sourceMgr = SkJpegSourceMgr::Make(stream.get()); const auto& segments = sourceMgr->getAllSegments(); // Verify we got the expected number of segments at EndOfImage REPORTER_ASSERT(r, rec.eoiSegmentCount == segments.size()); // Verify we got the expected number of segments before StartOfScan for (size_t i = 0; i < segments.size(); ++i) { if (segments[i].marker == kJpegMarkerStartOfScan) { REPORTER_ASSERT(r, rec.sosSegmentCount == i + 1); break; } } // Verify the values for a randomly pre-selected segment index. const auto& segment = segments[rec.testSegmentIndex]; REPORTER_ASSERT(r, rec.testSegmentMarker == segment.marker); REPORTER_ASSERT(r, rec.testSegmentOffset == segment.offset); REPORTER_ASSERT(r, rec.testSegmentParameterLength == segment.parameterLength); } } static bool find_mp_params_segment(SkStream* stream, std::unique_ptr* outMpParams, SkJpegSegment* outMpParamsSegment) { auto sourceMgr = SkJpegSourceMgr::Make(stream); for (const auto& segment : sourceMgr->getAllSegments()) { if (segment.marker != kMpfMarker) { continue; } auto parameterData = sourceMgr->getSegmentParameters(segment); if (!parameterData) { continue; } *outMpParams = SkJpegMultiPictureParameters::Make(parameterData); if (*outMpParams) { *outMpParamsSegment = segment; return true; } } return false; } DEF_TEST(Codec_multiPictureParams, r) { // Little-endian test. { const uint8_t bytes[] = { 0x4d, 0x50, 0x46, 0x00, 0x49, 0x49, 0x2a, 0x00, 0x08, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0xb0, 0x07, 0x00, 0x04, 0x00, 0x00, 0x00, 0x30, 0x31, 0x30, 0x30, 0x01, 0xb0, 0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x02, 0xb0, 0x07, 0x00, 0x20, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x20, 0xcf, 0x49, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xee, 0x28, 0x01, 0x00, 0xf9, 0xb7, 0x3c, 0x00, 0x00, 0x00, 0x00, 0x00, }; auto mpParams = SkJpegMultiPictureParameters::Make(SkData::MakeWithoutCopy(bytes, sizeof(bytes))); REPORTER_ASSERT(r, mpParams); REPORTER_ASSERT(r, mpParams->images.size() == 2); REPORTER_ASSERT(r, mpParams->images[0].dataOffset == 0); REPORTER_ASSERT(r, mpParams->images[0].size == 4837152); REPORTER_ASSERT(r, mpParams->images[1].dataOffset == 3979257); REPORTER_ASSERT(r, mpParams->images[1].size == 76014); } // Big-endian test. { const uint8_t bytes[] = { 0x4d, 0x50, 0x46, 0x00, 0x4d, 0x4d, 0x00, 0x2a, 0x00, 0x00, 0x00, 0x08, 0x00, 0x03, 0xb0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x04, 0x30, 0x31, 0x30, 0x30, 0xb0, 0x01, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0xb0, 0x02, 0x00, 0x07, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x00, 0x20, 0x03, 0x00, 0x00, 0x00, 0x56, 0xda, 0x2f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0xc6, 0x01, 0x00, 0x55, 0x7c, 0x1f, 0x00, 0x00, 0x00, 0x00, }; auto mpParams = SkJpegMultiPictureParameters::Make(SkData::MakeWithoutCopy(bytes, sizeof(bytes))); REPORTER_ASSERT(r, mpParams); REPORTER_ASSERT(r, mpParams->images.size() == 2); REPORTER_ASSERT(r, mpParams->images[0].dataOffset == 0); REPORTER_ASSERT(r, mpParams->images[0].size == 5691951); REPORTER_ASSERT(r, mpParams->images[1].dataOffset == 5602335); REPORTER_ASSERT(r, mpParams->images[1].size == 1361409); } // Three entry test. { const uint8_t bytes[] = { 0x4d, 0x50, 0x46, 0x00, 0x4d, 0x4d, 0x00, 0x2a, 0x00, 0x00, 0x00, 0x08, 0x00, 0x03, 0xb0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x04, 0x30, 0x31, 0x30, 0x30, 0xb0, 0x01, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x03, 0xb0, 0x02, 0x00, 0x07, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x1f, 0x1c, 0xc2, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x05, 0xb0, 0x00, 0x1f, 0x12, 0xec, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x96, 0x6b, 0x00, 0x22, 0x18, 0x9c, 0x00, 0x00, 0x00, 0x00, }; auto mpParams = SkJpegMultiPictureParameters::Make(SkData::MakeWithoutCopy(bytes, sizeof(bytes))); REPORTER_ASSERT(r, mpParams); REPORTER_ASSERT(r, mpParams->images.size() == 3); REPORTER_ASSERT(r, mpParams->images[0].dataOffset == 0); REPORTER_ASSERT(r, mpParams->images[0].size == 2038978); REPORTER_ASSERT(r, mpParams->images[1].dataOffset == 2036460); REPORTER_ASSERT(r, mpParams->images[1].size == 198064); REPORTER_ASSERT(r, mpParams->images[2].dataOffset == 2234524); REPORTER_ASSERT(r, mpParams->images[2].size == 38507); } } DEF_TEST(Codec_jpegMultiPicture, r) { const char* path = "images/iphone_13_pro.jpeg"; auto stream = GetResourceAsStream(path); REPORTER_ASSERT(r, stream); // Search and parse the MPF header. std::unique_ptr mpParams; SkJpegSegment mpParamsSegment; REPORTER_ASSERT(r, find_mp_params_segment(stream.get(), &mpParams, &mpParamsSegment)); // Verify that we get the same parameters when we re-serialize and de-serialize them { auto mpParamsSerialized = mpParams->serialize(); REPORTER_ASSERT(r, mpParamsSerialized); auto mpParamsRoundTripped = SkJpegMultiPictureParameters::Make(mpParamsSerialized); REPORTER_ASSERT(r, mpParamsRoundTripped); REPORTER_ASSERT(r, mpParamsRoundTripped->images.size() == mpParams->images.size()); for (size_t i = 0; i < mpParamsRoundTripped->images.size(); ++i) { REPORTER_ASSERT(r, mpParamsRoundTripped->images[i].size == mpParams->images[i].size); REPORTER_ASSERT( r, mpParamsRoundTripped->images[i].dataOffset == mpParams->images[i].dataOffset); } } const struct Rec { const TestStream::Type streamType; const bool skipFirstImage; const size_t bufferSize; } recs[] = { {TestStream::Type::kMemoryMapped, false, 1024}, {TestStream::Type::kMemoryMapped, true, 1024}, {TestStream::Type::kSeekable, false, 1024}, {TestStream::Type::kSeekable, true, 1024}, {TestStream::Type::kSeekable, false, 7}, {TestStream::Type::kSeekable, true, 13}, {TestStream::Type::kSeekable, true, 1024 * 1024 * 16}, {TestStream::Type::kUnseekable, false, 1024}, {TestStream::Type::kUnseekable, true, 1024}, {TestStream::Type::kUnseekable, false, 1}, {TestStream::Type::kUnseekable, true, 1}, {TestStream::Type::kUnseekable, false, 7}, {TestStream::Type::kUnseekable, true, 13}, {TestStream::Type::kUnseekable, false, 1024 * 1024 * 16}, {TestStream::Type::kUnseekable, true, 1024 * 1024 * 16}, }; for (const auto& rec : recs) { stream->rewind(); TestStream testStream(rec.streamType, stream.get()); auto sourceMgr = SkJpegSourceMgr::Make(&testStream, rec.bufferSize); // Decode the images into bitmaps. size_t numberOfImages = mpParams->images.size(); std::vector bitmaps(numberOfImages); for (size_t i = 0; i < numberOfImages; ++i) { if (i == 0) { REPORTER_ASSERT(r, mpParams->images[i].dataOffset == 0); continue; } if (i == 1 && rec.skipFirstImage) { continue; } auto imageData = sourceMgr->getSubsetData( SkJpegMultiPictureParameters::GetAbsoluteOffset(mpParams->images[i].dataOffset, mpParamsSegment.offset), mpParams->images[i].size); REPORTER_ASSERT(r, imageData); std::unique_ptr codec = SkCodec::MakeFromStream(SkMemoryStream::Make(imageData)); REPORTER_ASSERT(r, codec); SkBitmap bm; bm.allocPixels(codec->getInfo()); REPORTER_ASSERT(r, SkCodec::kSuccess == codec->getPixels(bm.info(), bm.getPixels(), bm.rowBytes())); bitmaps[i] = bm; } // Spot-check the image size and pixels. if (!rec.skipFirstImage) { REPORTER_ASSERT(r, bitmaps[1].dimensions() == SkISize::Make(1512, 2016)); REPORTER_ASSERT(r, bitmaps[1].getColor(0, 0) == 0xFF3B3B3B); REPORTER_ASSERT(r, bitmaps[1].getColor(1511, 2015) == 0xFF101010); } REPORTER_ASSERT(r, bitmaps[2].dimensions() == SkISize::Make(576, 768)); REPORTER_ASSERT(r, bitmaps[2].getColor(0, 0) == 0xFF010101); REPORTER_ASSERT(r, bitmaps[2].getColor(575, 767) == 0xFFB5B5B5); } } // Decode an image and its gainmap. template void decode_all(Reporter& r, std::unique_ptr stream, SkBitmap& baseBitmap, SkBitmap& gainmapBitmap, SkGainmapInfo& gainmapInfo) { // Decode the base bitmap. SkCodec::Result result = SkCodec::kSuccess; std::unique_ptr baseCodec = SkJpegCodec::MakeFromStream(std::move(stream), &result); REPORTER_ASSERT(r, baseCodec); baseBitmap.allocPixels(baseCodec->getInfo()); REPORTER_ASSERT(r, SkCodec::kSuccess == baseCodec->getPixels(baseBitmap.info(), baseBitmap.getPixels(), baseBitmap.rowBytes())); std::unique_ptr androidCodec = SkAndroidCodec::MakeFromCodec(std::move(baseCodec)); REPORTER_ASSERT(r, androidCodec); // Extract the gainmap info and stream. std::unique_ptr gainmapStream; REPORTER_ASSERT(r, androidCodec->getAndroidGainmap(&gainmapInfo, &gainmapStream)); REPORTER_ASSERT(r, gainmapStream); // Decode the gainmap bitmap. std::unique_ptr gainmapCodec = SkCodec::MakeFromStream(std::move(gainmapStream)); REPORTER_ASSERT(r, gainmapCodec); SkBitmap bm; bm.allocPixels(gainmapCodec->getInfo()); gainmapBitmap.allocPixels(gainmapCodec->getInfo()); REPORTER_ASSERT(r, SkCodec::kSuccess == gainmapCodec->getPixels(gainmapBitmap.info(), gainmapBitmap.getPixels(), gainmapBitmap.rowBytes())); } static bool approx_eq(float x, float y, float epsilon) { return std::abs(x - y) < epsilon; } DEF_TEST(AndroidCodec_jpegGainmapDecode, r) { const struct Rec { const char* path; SkISize dimensions; SkColor originColor; SkColor farCornerColor; float logRatioMin; float logRatioMax; float hdrRatioMin; float hdrRatioMax; SkGainmapInfo::Type type; } recs[] = { {"images/iphone_13_pro.jpeg", SkISize::Make(1512, 2016), 0xFF3B3B3B, 0xFF101010, 0.f, 1.f, 1.f, 2.71828f, SkGainmapInfo::Type::kMultiPicture}, {"images/hdrgm.jpg", SkISize::Make(188, 250), 0xFFE9E9E9, 0xFFAAAAAA, -2.209409f, 2.209409f, 1.f, 9.110335f, SkGainmapInfo::Type::kHDRGM}, }; TestStream::Type kStreamTypes[] = { TestStream::Type::kUnseekable, TestStream::Type::kSeekable, TestStream::Type::kMemoryMapped, }; for (const auto& streamType : kStreamTypes) { bool useFileStream = streamType != TestStream::Type::kMemoryMapped; for (const auto& rec : recs) { auto stream = GetResourceAsStream(rec.path, useFileStream); REPORTER_ASSERT(r, stream); auto testStream = std::make_unique(streamType, stream.get()); SkBitmap baseBitmap; SkBitmap gainmapBitmap; SkGainmapInfo gainmapInfo; decode_all(r, std::move(testStream), baseBitmap, gainmapBitmap, gainmapInfo); // Spot-check the image size and pixels. REPORTER_ASSERT(r, gainmapBitmap.dimensions() == rec.dimensions); REPORTER_ASSERT(r, gainmapBitmap.getColor(0, 0) == rec.originColor); REPORTER_ASSERT( r, gainmapBitmap.getColor(rec.dimensions.fWidth - 1, rec.dimensions.fHeight - 1) == rec.farCornerColor); // Verify the gainmap rendering parameters. constexpr float kEpsilon = 1e-3f; REPORTER_ASSERT(r, approx_eq(gainmapInfo.fLogRatioMin.fR, rec.logRatioMin, kEpsilon)); REPORTER_ASSERT(r, approx_eq(gainmapInfo.fLogRatioMin.fG, rec.logRatioMin, kEpsilon)); REPORTER_ASSERT(r, approx_eq(gainmapInfo.fLogRatioMin.fB, rec.logRatioMin, kEpsilon)); REPORTER_ASSERT(r, approx_eq(gainmapInfo.fLogRatioMax.fR, rec.logRatioMax, kEpsilon)); REPORTER_ASSERT(r, approx_eq(gainmapInfo.fLogRatioMax.fG, rec.logRatioMax, kEpsilon)); REPORTER_ASSERT(r, approx_eq(gainmapInfo.fLogRatioMax.fB, rec.logRatioMax, kEpsilon)); REPORTER_ASSERT(r, approx_eq(gainmapInfo.fHdrRatioMin, rec.hdrRatioMin, kEpsilon)); REPORTER_ASSERT(r, approx_eq(gainmapInfo.fHdrRatioMax, rec.hdrRatioMax, kEpsilon)); REPORTER_ASSERT(r, gainmapInfo.fType == rec.type); } } } DEF_TEST(AndroidCodec_jpegNoGainmap, r) { // This test image has a large APP16 segment that will stress the various SkJpegSourceMgrs' // data skipping paths. const char* path = "images/icc-v2-gbr.jpg"; TestStream::Type kStreamTypes[] = { TestStream::Type::kUnseekable, TestStream::Type::kSeekable, TestStream::Type::kMemoryMapped, }; for (const auto& streamType : kStreamTypes) { bool useFileStream = streamType != TestStream::Type::kMemoryMapped; auto stream = GetResourceAsStream(path, useFileStream); REPORTER_ASSERT(r, stream); auto testStream = std::make_unique(streamType, stream.get()); // Decode the base bitmap. SkCodec::Result result = SkCodec::kSuccess; std::unique_ptr baseCodec = SkJpegCodec::MakeFromStream(std::move(testStream), &result); REPORTER_ASSERT(r, baseCodec); SkBitmap baseBitmap; baseBitmap.allocPixels(baseCodec->getInfo()); REPORTER_ASSERT(r, SkCodec::kSuccess == baseCodec->getPixels(baseBitmap.info(), baseBitmap.getPixels(), baseBitmap.rowBytes())); std::unique_ptr androidCodec = SkAndroidCodec::MakeFromCodec(std::move(baseCodec)); REPORTER_ASSERT(r, androidCodec); // Try to extract the gainmap info and stream. It should fail. SkGainmapInfo gainmapInfo; std::unique_ptr gainmapStream; REPORTER_ASSERT(r, !androidCodec->getAndroidGainmap(&gainmapInfo, &gainmapStream)); } } #if !defined(SK_ENABLE_NDK_IMAGES) static bool approx_eq_rgb(const SkColor4f& x, const SkColor4f& y, float epsilon) { return approx_eq(x.fR, y.fR, epsilon) && approx_eq(x.fG, y.fG, epsilon) && approx_eq(x.fB, y.fB, epsilon); } DEF_TEST(AndroidCodec_gainmapInfoEncode, r) { SkDynamicMemoryWStream encodeStream; SkGainmapInfo gainmapInfo; SkBitmap baseBitmap; baseBitmap.allocPixels(SkImageInfo::MakeN32Premul(8, 8)); SkBitmap gainmapBitmap; gainmapBitmap.allocPixels(SkImageInfo::MakeN32Premul(8, 8)); gainmapInfo.fGainmapRatioMin.fR = 1.f; gainmapInfo.fGainmapRatioMin.fG = 2.f; gainmapInfo.fGainmapRatioMin.fB = 4.f; gainmapInfo.fGainmapRatioMax.fR = 8.f; gainmapInfo.fGainmapRatioMax.fG = 16.f; gainmapInfo.fGainmapRatioMax.fB = 32.f; gainmapInfo.fGainmapGamma.fR = 64.f; gainmapInfo.fGainmapGamma.fG = 128.f; gainmapInfo.fGainmapGamma.fB = 256.f; gainmapInfo.fEpsilonSdr.fR = 1 / 10.f; gainmapInfo.fEpsilonSdr.fG = 1 / 11.f; gainmapInfo.fEpsilonSdr.fB = 1 / 12.f; gainmapInfo.fEpsilonHdr.fR = 1 / 13.f; gainmapInfo.fEpsilonHdr.fG = 1 / 14.f; gainmapInfo.fEpsilonHdr.fB = 1 / 15.f; gainmapInfo.fDisplayRatioSdr = 4.f; gainmapInfo.fDisplayRatioHdr = 32.f; for (int i = 0; i < 2; ++i) { // In the second iteration, change some of the lists to scalars. if (i == 1) { gainmapInfo.fGainmapRatioMax.fR = 32.f; gainmapInfo.fGainmapRatioMax.fG = 32.f; gainmapInfo.fGainmapRatioMax.fB = 32.f; gainmapInfo.fEpsilonSdr.fR = 1 / 10.f; gainmapInfo.fEpsilonSdr.fG = 1 / 10.f; gainmapInfo.fEpsilonSdr.fB = 1 / 10.f; } // Encode |gainmapInfo|. bool encodeResult = SkJpegGainmapEncoder::EncodeJpegR(&encodeStream, baseBitmap.pixmap(), SkJpegEncoder::Options(), gainmapBitmap.pixmap(), SkJpegEncoder::Options(), gainmapInfo); REPORTER_ASSERT(r, encodeResult); // Decode into |decodedGainmapInfo|. SkGainmapInfo decodedGainmapInfo; auto decodeStream = std::make_unique(encodeStream.detachAsData()); decode_all(r, std::move(decodeStream), baseBitmap, gainmapBitmap, decodedGainmapInfo); // Verify they are |gainmapInfo| matches |decodedGainmapInfo|. REPORTER_ASSERT(r, gainmapInfo == decodedGainmapInfo); } } #if defined(SK_ENABLE_SKSL) // Render an applied gainmap. static SkBitmap render_gainmap(const SkImageInfo& renderInfo, float renderHdrRatio, const SkBitmap& baseBitmap, const SkBitmap& gainmapBitmap, const SkGainmapInfo& gainmapInfo, int x, int y) { SkRect baseRect = SkRect::MakeXYWH(x, y, renderInfo.width(), renderInfo.height()); float scaleX = gainmapBitmap.width() / static_cast(baseBitmap.width()); float scaleY = gainmapBitmap.height() / static_cast(baseBitmap.height()); SkRect gainmapRect = SkRect::MakeXYWH(baseRect.x() * scaleX, baseRect.y() * scaleY, baseRect.width() * scaleX, baseRect.height() * scaleY); SkRect dstRect = SkRect::Make(renderInfo.dimensions()); sk_sp baseImage = SkImages::RasterFromBitmap(baseBitmap); sk_sp gainmapImage = SkImages::RasterFromBitmap(gainmapBitmap); sk_sp shader = SkGainmapShader::Make(baseImage, baseRect, SkSamplingOptions(), gainmapImage, gainmapRect, SkSamplingOptions(), gainmapInfo, dstRect, renderHdrRatio, renderInfo.refColorSpace()); SkBitmap result; result.allocPixels(renderInfo); result.eraseColor(SK_ColorTRANSPARENT); SkCanvas canvas(result); SkPaint paint; paint.setShader(shader); canvas.drawRect(dstRect, paint); return result; } // Render a single pixel of an applied gainmap and return it. static SkColor4f render_gainmap_pixel(float renderHdrRatio, const SkBitmap& baseBitmap, const SkBitmap& gainmapBitmap, const SkGainmapInfo& gainmapInfo, int x, int y) { SkImageInfo testPixelInfo = SkImageInfo::Make( /*width=*/1, /*height=*/1, kRGBA_F16_SkColorType, kPremul_SkAlphaType, SkColorSpace::MakeSRGB()); SkBitmap testPixelBitmap = render_gainmap( testPixelInfo, renderHdrRatio, baseBitmap, gainmapBitmap, gainmapInfo, x, y); return testPixelBitmap.getColor4f(0, 0); } #endif DEF_TEST(AndroidCodec_jpegGainmapTranscode, r) { const char* path = "images/iphone_13_pro.jpeg"; SkBitmap baseBitmap[2]; SkBitmap gainmapBitmap[2]; SkGainmapInfo gainmapInfo[2]; // Decode an MPF-based gainmap image. decode_all(r, GetResourceAsStream(path), baseBitmap[0], gainmapBitmap[0], gainmapInfo[0]); constexpr float kEpsilon = 1e-2f; for (size_t i = 0; i < 2; ++i) { SkDynamicMemoryWStream encodeStream; bool encodeResult = false; if (i == 0) { // Transcode to JpegR. encodeResult = SkJpegGainmapEncoder::EncodeJpegR(&encodeStream, baseBitmap[0].pixmap(), SkJpegEncoder::Options(), gainmapBitmap[0].pixmap(), SkJpegEncoder::Options(), gainmapInfo[0]); } else { // Transcode to HDRGM. encodeResult = SkJpegGainmapEncoder::EncodeHDRGM(&encodeStream, baseBitmap[0].pixmap(), SkJpegEncoder::Options(), gainmapBitmap[0].pixmap(), SkJpegEncoder::Options(), gainmapInfo[0]); } REPORTER_ASSERT(r, encodeResult); auto encodeData = encodeStream.detachAsData(); // Decode the just-encoded image. auto decodeStream = std::make_unique(encodeData); decode_all(r, std::move(decodeStream), baseBitmap[1], gainmapBitmap[1], gainmapInfo[1]); // HDRGM will have the same rendering parameters. REPORTER_ASSERT( r, approx_eq_rgb(gainmapInfo[0].fLogRatioMin, gainmapInfo[1].fLogRatioMin, kEpsilon)); REPORTER_ASSERT( r, approx_eq_rgb(gainmapInfo[0].fLogRatioMax, gainmapInfo[1].fLogRatioMax, kEpsilon)); REPORTER_ASSERT( r, approx_eq_rgb( gainmapInfo[0].fGainmapGamma, gainmapInfo[1].fGainmapGamma, kEpsilon)); REPORTER_ASSERT( r, approx_eq(gainmapInfo[0].fEpsilonSdr.fR, gainmapInfo[1].fEpsilonSdr.fR, kEpsilon)); REPORTER_ASSERT( r, approx_eq(gainmapInfo[0].fEpsilonHdr.fR, gainmapInfo[1].fEpsilonHdr.fR, kEpsilon)); REPORTER_ASSERT( r, approx_eq(gainmapInfo[0].fHdrRatioMin, gainmapInfo[1].fHdrRatioMin, kEpsilon)); REPORTER_ASSERT( r, approx_eq(gainmapInfo[0].fHdrRatioMax, gainmapInfo[1].fHdrRatioMax, kEpsilon)); #if defined(SK_ENABLE_SKSL) // Render a few pixels and verify that they come out the same. Rendering requires SkSL. const struct Rec { int x; int y; float hdrRatio; SkColor4f expectedColor; SkColorType forcedColorType; } recs[] = { {1446, 1603, 1.05f, {0.984375f, 1.004883f, 1.008789f, 1.f}, kUnknown_SkColorType}, {1446, 1603, 100.f, {1.147461f, 1.170898f, 1.174805f, 1.f}, kUnknown_SkColorType}, {1446, 1603, 100.f, {1.147461f, 1.170898f, 1.174805f, 1.f}, kGray_8_SkColorType}, {1446, 1603, 100.f, {1.147461f, 1.170898f, 1.174805f, 1.f}, kAlpha_8_SkColorType}, {1446, 1603, 100.f, {1.147461f, 1.170898f, 1.174805f, 1.f}, kR8_unorm_SkColorType}, }; for (const auto& rec : recs) { SkBitmap gainmapBitmap0; SkASSERT(gainmapBitmap[0].colorType() == kGray_8_SkColorType); // Force various different single-channel formats, to ensure that they all work. Note // that when the color type is forced to kAlpha_8_SkColorType, the shader will always // read (0,0,0,1) if the alpha type is kOpaque_SkAlphaType. if (rec.forcedColorType == kUnknown_SkColorType) { gainmapBitmap0 = gainmapBitmap[0]; } else { gainmapBitmap0.installPixels(gainmapBitmap[0] .info() .makeColorType(rec.forcedColorType) .makeAlphaType(kPremul_SkAlphaType), gainmapBitmap[0].getPixels(), gainmapBitmap[0].rowBytes()); } SkColor4f p0 = render_gainmap_pixel( rec.hdrRatio, baseBitmap[0], gainmapBitmap0, gainmapInfo[0], rec.x, rec.y); SkColor4f p1 = render_gainmap_pixel( rec.hdrRatio, baseBitmap[1], gainmapBitmap[1], gainmapInfo[1], rec.x, rec.y); REPORTER_ASSERT(r, approx_eq_rgb(p0, p1, kEpsilon)); } #endif // !defined(SK_ENABLE_SKSL) } } #endif // !defined(SK_ENABLE_NDK_IMAGES)